G.992.1 ANNEX Q PROPRIETARY EXTENSION TO G.992.1 ANNEX I

Attached is proposed text for G.992.1 Annex Q (Quad spectrum), a proprietary extension to G.992.1 Annex I to extend the data rate beyond 32 Mbit/s on short loops by way of:

- Increased bandwidth \rightarrow increased number of subcarriers, NSC=1024 (used subcarriers up to 869)
- Increased bit loading, beyond 15 bits/bin
- Extended framing \rightarrow S=1/2n, with support for n = 1 to 4

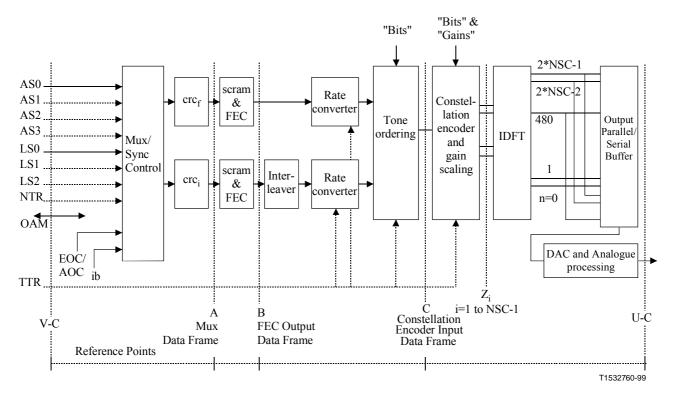
The attached text is the approved draft text for Annex I, marked up with revision control to show the changes necessary to support the additional functionality. Editorial changes such as replacing "Annex I" with "Annex Q" are not shown with revision control.

ANNEX Q

Specific requirements for an ADSL system to support data rates greater than 32 Mbit/s on short loops operating in the same cable as ISDN as defined in ITU-T Recommendation G.961 Appendix III

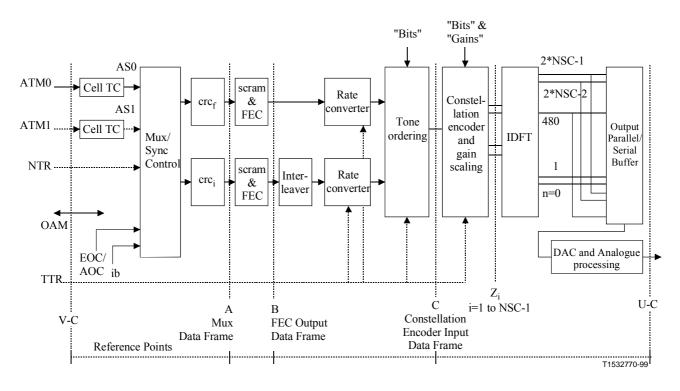
Q.1 Scope

This annex describes those specifications that are unique to an ADSL system coexisting in the same binder as TCM-ISDN as defined Recommendation G.961 Appendix III. The subclauses in this annex provide supplementary and replacement material to the clauses in the main body. The nature of the material is parenthetically indicated in the subclause heading. The modifications described in this annex allow a performance improvement from the ADSL system specified in Annex C for short loops in an environment coexisting with TCM-ISDN in the same cable. Specifically, this Annex specifies extensions to downstream bandwidth, framing modes, and maximum bit loading to support downstream data rates greater than 32 Mbit/s. This annex also defines those parameters of this ADSL system that have been left undefined in the main body of this Recommendation. It is recommended that ADSL system implementing Annex Q also implements Annex C.


Q.2 Definitions

Bitmap-F _C	ATU-R transmitter bitmap under TCM-ISDN FEXT noise generated at ATU-C
Bitmap-F _R	ATU-C transmitter bitmap under TCM-ISDN FEXT noise generated at ATU-R
Bitmap-N _C	ATU-R transmitter bitmap under TCM-ISDN NEXT noise generated at ATU-C
Bitmap-N _R	ATU-C transmitter bitmap under TCM-ISDN NEXT noise generated at ATU-R
Dual Bitmap FEXT Bitmap	The Dual Bitmap method has dual bit rates under the FEXT and NEXT noise from TCM-ISDN Similar to the Dual Bitmap method however transmission only occurs during FEXT noise from TCM-ISDN
FEXT _C duration	TCM-ISDN FEXT duration at ATU-C estimated by the ATU-R
FEXT _C symbol	DMT symbol transmitted by ATU-R during TCM-ISDN FEXT
FEXT _R duration	TCM-ISDN FEXT duration at ATU-R estimated by the ATU-C
FEXT _R symbol	DMT symbol transmitted by ATU-C during TCM-ISDN FEXT
Hyperframe NEXT _C duration	5 Superframes structure which synchronized TTR TCM-ISDN NEXT duration at ATU-C estimated by the ATU-R
NEXT _C symbol	DMT symbol transmitted by ATU-R during TCM-ISDN NEXT
NEXT _R duration	TCM-ISDN NEXT duration at ATU-R estimated by the ATU-C
NEXT _R symbol	DMT symbol transmitted by ATU-C during TCM-ISDN NEXT
NSC	The highest subcarrier index that can be used for downstream transmission (i.e., the subcarrier index corresponding to the Nyquist frequency) For example, $NSC = 256$ for a downstream channel using the frequency band up to 1.104MHz; $NSC = 512$ for a downstream channel using the frequency band up to 2.208MHz. Sliding Window frame counter
N _{SWF} Subframe	
TTR	10 consecutive DMT symbols (except for sync symbols) according to TTR timing TCM-ISDN Timing Reference
TTR _C	Timing reference used in ATU-C
TTRR	Timing reference used in ATU-R
UI	Unit Interval

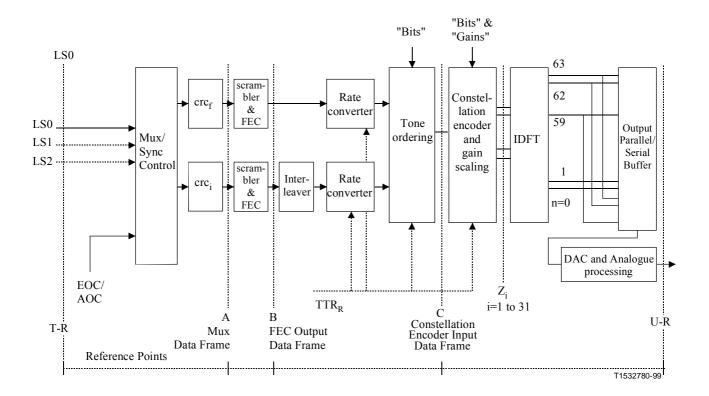
Q.3 Reference Models


Q.3.1 ATU-C transmitter reference model (replaces figures in 5.1)

See Figure Q.1 and Figure Q.2.

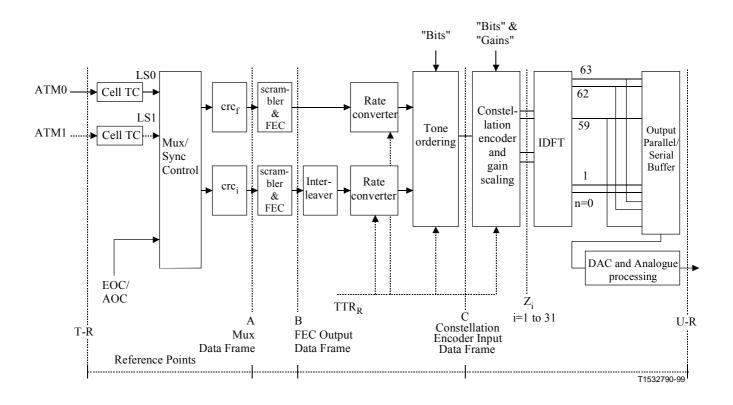
NOTE - The TTR may be generated in ATU-C without being provided from the TCM-ISDN clock.

Figure Q.1/G.992.1 – ATU-C transmitter reference model for STM transport

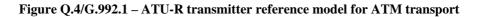


NOTE - The TTR may be generated in ATU-C without being provided from the TCM-ISDN clock.

Figure Q.2/G.992.1 – ATU-C transmitter reference model for ATM transport

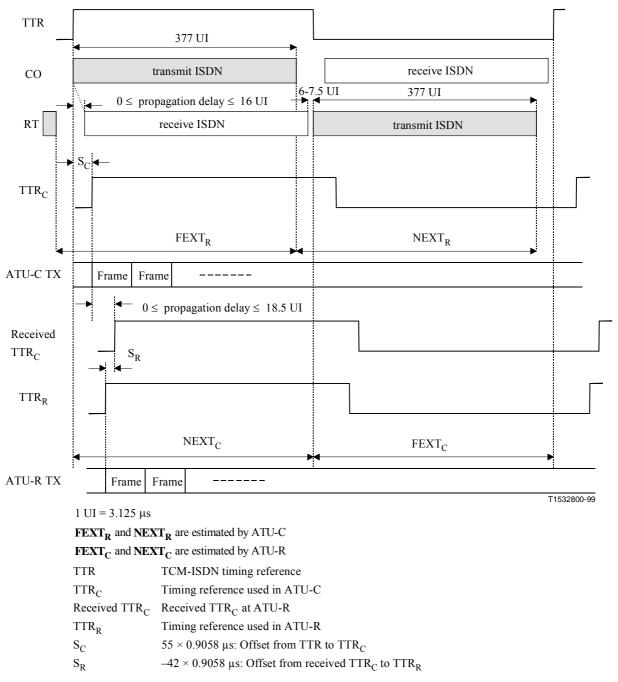

Q.3.2 ATU-R transmitter reference model (replaces figures in 5.2)

See Figure Q.3 and Figure Q.4.



NOTE – The TTR_R shall be generated in ATU-R from the received TTR_C signal, and it is locked to 690 periods of upstream sampling clock (276 kHz).

Figure Q.3/G.992.1 – ATU-R transmitter reference model for STM transport


NOTE – The TTR_R shall be generated in ATU-R from the received TTR_C signal, and it is locked to 690 periods of upstream sampling clock (276 kHz).

Q.3.3 ATU-C/R transmitter timing model (replacement for 5.3)

Q.3.3.1 TCM-ISDN crosstalk timing model (new)

Figure Q.5 shows the timing chart of the crosstalk from TCM-ISDN.

Figure Q.5/G.992.1 – Timing chart of the TCM-ISDN crosstalk

The data stream of TCM-ISDN is transmitted in TTR period. CO transmits the stream in the first half of the TTR period and RT transmits in the second half of the TTR period. ATU-C receives NEXT noise from the ISDN in the first half of the TTR period and FEXT noise from the ISDN in the second half of the TCM-ISDN period. On the other hand, ATU-R receives FEXT noise from the ISDN in the first half of the TTR period and NEXT noise from the ISDN in the second half of the TTR period.

As defined in Q.7.6.2 and Q.7.8.3, the ATU-C shall estimate the FEXT_R and NEXT_R duration at ATU-R, and the ATU-R shall estimate FEXT_C and NEXT_C duration at ATU-C taking propagation delay on the subscribe line into consideration.

The ATU-C shall transmit any symbols by synchronizing with the TTR_C . The ATU-R shall transmit any symbols synchronizing with the TTR_R generated from received TTR_C .

Q.3.3.2 Sliding window (new)

Figure Q.6 shows the timing chart of the transmission for the Annex Q downstream at ATU-C.

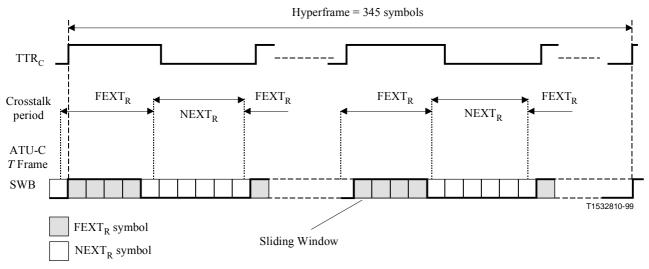


Figure Q.6/G.992.1 – Sliding window for downstream symbols

The Sliding Window defines the transmission symbols under the crosstalk noise environment synchronized to the period of TTR. The $\text{FEXT}_{C/R}$ symbol represents the symbol completely inside the $\text{FEXT}_{C/R}$ duration. The $\text{NEXT}_{C/R}$ symbol containing the $\text{NEXT}_{C/R}$ duration. Thus, there are more $\text{NEXT}_{C/R}$ symbols than $\text{FEXT}_{C/R}$ symbols.

The ATU-C decides which transmission symbol is FEXT_R or NEXT_R symbol according to the sliding window and transmits it with the corresponding bit table. Similarly, the ATU-R decides the transmission symbol is a FEXT_C or NEXT_C and transmits it with the corresponding bit table. Although the phase of the sliding window is asynchronous with $\text{TTR}_{C/R}$, the pattern is fixed to the 345 frames of the hyperframe.

Q.3.3.3 ATU-C Symbol Synchronization to TTR (new)

345 symbols are 34 cycles with cyclic prefix of TTR_C (or 32 cycles of TTR_C without cyclic prefix). This implies a PLL lock at the ATU-R.

Q.3.3.4 Dual Bitmap switching (new)

The ATU-C transmits FEXT_R symbols using Bitmap-F_R (in FEXT_R duration), and transmits NEXT_R symbols using Bitmap-N_R (in NEXT_R duration) according to the result of initialization. The ATU-R transmits FEXT_C symbols using Bitmap-F_C (in FEXT_C duration), and transmits NEXT_C symbols using Bitmap-F_C (in NEXT_C duration), and transmits NEXT_C symbols using Bitmap-N_C (in NEXT_C duration) in the same manner.

The ATU-C shall have the capability to disable Bitmap-N_C and Bitmap-N_R (see Q.4.5 and Q.5.3).

Q.3.3.5 Loop timing at ATU-R (new)

The phase relation between received symbol and transmitted symbol of ATU-R at the reference point U-R shall meet the phase tolerances as shown in Figure Q.7.

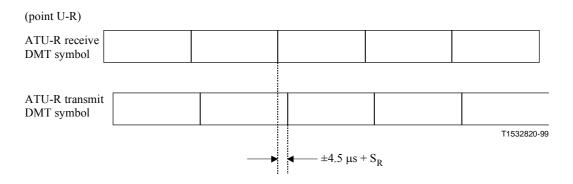
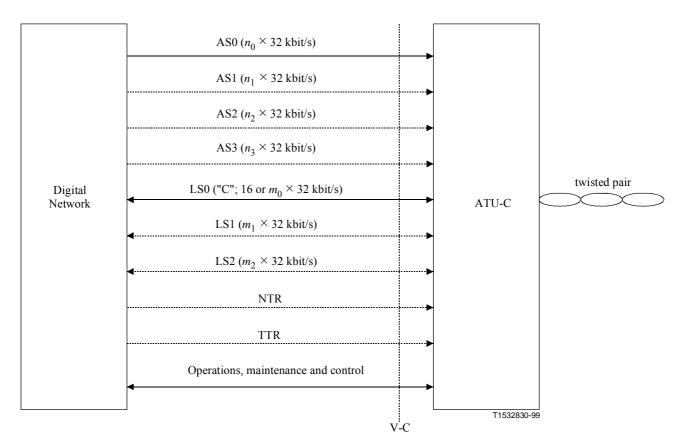



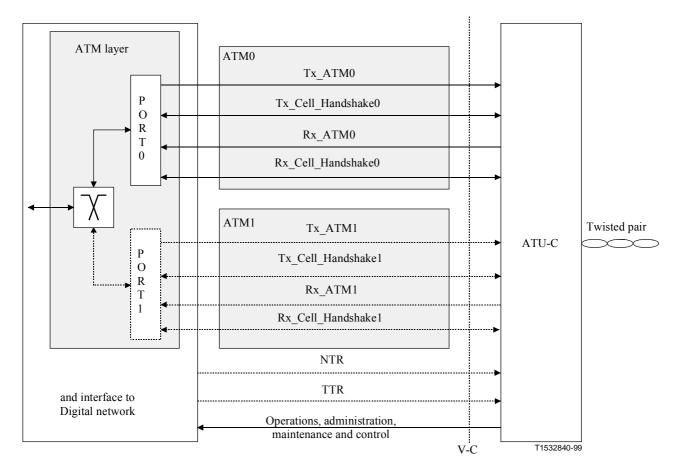
Figure Q.7/G.992.1 – Loop timing for ATU-R

- Q.4 ATU-C functional characteristics (pertains to clause 7)
- Q.4.1 STM transmission protocols specific functionality (pertains to 7.1)
- Q.4.1.1 ATU-C input and output V interface for STM transport (replaces figure in 7.1.1)

See Figure Q.8.

NOTE 1 – Optional bearer channels (both duplex and simplex) and features are shown with dotted lines. NOTE 2 – TTR may be generated in the ATU-C without being provided from the V-C reference point.

Figure Q.8/G.992.1 – ATU-C functional interfaces for STM transport at the V-C reference point


Q.4.1.2 Payload transfer delay (supplements 7.1.4)

Since Annex Q uses a rate converter, the maximum payload transfer delay is longer than specified values in 7.1.4. The additional one-way transfer delay due to the rate converters shall be less than 1.7 ms for fast data and 13 ms for interleaved data.

Q.4.2 ATM transmission protocols specific functionalities (pertains to 7.2)

Q.4.2.1 ATU-C Input and Output V interface for ATM transport (replaces figure in 7.2.1)

See Figure Q.9.

NOTE - TTR can be generated in the ATU-C without being provided from the V-C reference point.

Figure Q.9/G.992.1 – ATU-C functional interfaces to the ATM layer at the V-C reference point

Q.4.2.2 Payload transfer delay (supplements 7.2.2)

Since Annex Q uses a rate converter, the maximum payload transfer delay is longer than specified values in 7.2.2. The additional one-way transfer delay due to the rate converters shall be less than 1.7 ms for fast data and 13 ms for interleaved data.

Q.4.3 Framing (pertains to 7.4)

Q.4.3.1 Superframe structure (supplements 7.4.1.1)

Since the rate converter reorders the user data and overhead bit-level data to create hyperframes, the input data frames to the constellation encoder are different than those defined in 7.4.1.1.

Q.4.3.2 Hyperframe structure (replaces 7.4.1.3)

Annex Q uses the hyperframe structure shown in Figure Q.10. Figure Q.10 shows the phase relationship between the TTR_C and the hyperframe at the point U-C. Each hyperframe is composed of 5 superframes, which are numbered from 0 to 4. In order to indicate the boundary of the hyperframe, the inverse synch symbol is used for the 4th superframe (SPF#3), which is generated from a tone-by-tone 180-degree phase reversal of the synchronization symbol (see Q.4.7.1) except for the pilot tone.

The bit-level data stream from the rate-converter is extracted according to the size of Bitmap- F_R and Bitmap- N_R using the Sliding Window (see Q.3.3.2).

In order to make the bit rate to be a multiple of 32 kbit/s, the dummy bits are inserted at the end of hyperframe by the

rate converter (see Q.4.4.2). The hyperframe is composed of 345 DMT symbols, numbered from 0 to 344. Each symbol is assigned as $FEXT_R$ or $NEXT_R$ or $NEXT_R$ or $NEXT_R$ duration (see Q.2), and the following numerical formula gives the information which duration N_{dmt}-th DMT symbol belongs to at ATU-C transmitter (see Figure Q.11).

 $\label{eq:states} \begin{array}{ll} \mbox{For $N_{dmt}=0,1,...,344$} \\ S = 272 \ x \ N_{dmt} \ mod \ 2760$ \\ if \{ (S+271 < a) \ or \ (S > a+b) \} & then \ FEXT_R \ symbol \\ else & then \ NEXT_R \ symbol \\ where \ a = 1243, \ b = 1461 \end{array}$

Thus, 128 DMT symbols are allocated in the FEXT_R duration, and 217 DMT symbols are allocated in the NEXT_R duration. The symbols are composed of:

FEXT _R symbol:	
Number of symbol using Bitmap-F _R	= 126
Number of synch symbol	= 1
Number of inverse synch symbol NEXT _R symbol:	= 1
Number of symbol using Bitmap-N _R	= 214
Number of synch symbol	= 3

During FEXT Bitmap mode, the ATU-C shall transmit only the pilot tone in NEXT_R symbols.

Figure Q.10/G.992.1 – Hyperframe structure for downstream

TTR _C

0	0 1	2	3	4	5		6	7	8	9
1	10 11	12	13	14	15	16		7	18	19
2	20 21	22	23	24	25	26	27	<u> </u>	28	29
3	30 31	32	33 3	34	35	36	37	38	3 3	9 40
4	41	42 43	3 44	1 1	45	46	47	48	49	50
5	51 5	2 53	54	5	5	56	57	58	59	60
6	61 62	63	64	65	60	5	67	SS	69	70
7	71 72	73	74	75	76	7	7	78	79	80
8	81 82	83	84	85	86	87	8	8	89	90
9	91 92	93	94	95	96	97	98	9	9 1	00 101
10	101 102	103 1	04 10	05	106	107	108	109	9 11	0 111
11		13 11				117	118	119	120	
12	122 12	_	_	12		27	128	129	130	131
13	132 133		135	136			38	139	140	141
14	142 143	144	145	146	147		<u> </u>	49	150	151
15	152 153	154	155	156	157	158			60	161
16	162 163			66	167	168	169			71 172
17	173				177	178	179	180		
18		84 18:				188	189	190	191	
19 20	193 19		196	19		98	199	200 210	201	202
20	203 204 213 214	205	216	207	203	8 <u>2</u> 21	$\frac{09}{0}$	210	211	212
21	213 214	213	210	217	218	229			221	232
22	223 224		-	227	228	239	240	<u> </u>	<u> </u>	42 243
23		245 24			248	249	250	251		
25		55 250	·	<u> </u>		259	260	260	262	
26	264 26		267	26		59	270	271	272	273
27	274 ISS	276	277	278	279			281	282	283
28	284 285	286	287	288	289	29	0 2	91	292	293
29	294 295	296	297	298	299	300	30	1 3	02	303
30	304 305	306 3	07 3	08	309	310	311	31	2 3	13 314
31	315	316 31	7 31	8 3	319	320	321	322	32	3 324
32	325 32	26 327	7 328	32	29 3	330	331	332	333	334
33	335 33	6 337	338	339	34	10	341	342	343	SS
	ISS Inverse s	synch symb	ol S	S FE	XT _R Sy	nch syn	nbol S	S NE	XT _R syr	ich symbol
	FEXT _R d	lata symbol		NE	EXT _R da	ta symb	ol			T1535330-00

Figure Q.11/G.992.1 – Symbol pattern in a hyperframe with cyclic prefix – Downstream

Q.4.3.3 Subframe Structure (replaces 7.4.1.4)

A subframe is 10 consecutive DMT symbols (except for synch symbols) as shown in Table Q.1. The 34 subframes form a hyperframe.

Subframe No.	DMT symbol No.	Note
0	0-9	
1	10-19	
2	20-29	
3	30-39	
4	40-49	
5	50-59	
6	60-70	#68 is Synch Symbol
7	71-80	
8	81-90	
9	91-100	
10	101-110	
11	111-120	
12	121-130	
13	131-141	#137 is Synch Symbol
14	142-151	
15	152-161	
16	162-171	
17	172-181	
18	182-191	
19	192-201	
20	202-212	#206 is Synch Symbol
21	213-222	
22	223-232	
23	233-242	
24	243-252	
25	253-262	
26	263-272	
27	273-283	#275 is Inverse Synch Symbol
28	284-293	
29	294-303	
30	304-313	
31	314-323	
32	324-333	
33	334-344	#344 is Synch Symbol

Table Q.1/G.992.1 – Subframe (downstream)

Q.4.3.4 Reduced overhead framing with merged fast and sync bytes (modifies 7.4.3.2)

In S=1/2n framing mode (see §Q.4.9), there are n Sync bytes per symbol time. The contents of the Sync bytes is the same as in regular framing except that it repeats at n times the rate causing the superframe to be 68/n symbols in length. The contents of the sync bytes are shown in Table 7-6/G.992.1. In S=1/2n framing mode, "Frame Number" in column 1 in Table 7-6/G.992.1 is replaced by "Sync Byte Index Number".

As a result of the increase in superframe rate, the superframe contents is carried more frequently. For the case when N=2, the EOC and AOC bandwidth doubles, thereby transferring actual messages at twice the rate. The CRC byte is carried twice as frequently and therefore the maximum error rate rises from just over 58 per second to 117 per second. Where the duration of an error condition is measured, this needs to be taken into consideration. The indicator bits are also sent twice as often, which needs to be taken into consideration.

Q.4.4 Dual Bitmapping and Rate Conversion (replaces 7.15)

The functions of the rate converter (see Q.4.4.2), tone ordering (see Q.4.6), constellation encoding, and gain scaling shall use one of two bitmaps stored in the ATU. This method is called the dual bitmap.

Q.4.4.1 Dual Bitmap (new)

The Dual Bitmap method has individual bit rates under the FEXT and NEXT noise, and this needs an additional bit and gain table, $\{b_i, g_i\}$, and ordered bit table, b'_i , for the tone ordering. The dual bitmaps are switched synchronized with the sliding window pattern of NEXT/FEXT symbols. The number of bits and the relative gains to be used for every tone are calculated in the bit loading algorithm during the initialization sequence, and transmitted in R-B&G.

Q.4.4.2 Rate Converter (new)

The rate converter buffering changes the data frame boundaries between the reference points B and C according to Bitmap- F_R , Bitmap- N_R and the Sliding Window. Two independent rate converters are prepared for fast data and interleaved data. The amount of fast and interleaved data in Bitmap- F_R and Bitmap- N_R shall be calculated with the following formulae and illustrated in Figure Q.12:

If $t_{Rf} \le n_{Rmax}$:

$$n_{Rf} = t_{Rf}$$

$$n_{Ri} = n_R - n_{Rf}$$

$$f_{Rf} = t_{Rf}$$

$$f_{Ri} = f_R - f_{Rf}$$

If $t_{Rf} > n_{Rmax}$:

$$n_{Rf} = n_{R \max}$$

$$n_{Ri} = 0$$

$$f_{Rf} = \begin{cases} f_{Rf4} = \left\lceil \frac{t_{Rf} \times 10 - n_{Rf} \times 6}{4} \right\rceil \\ f_{Rf3} = \left\lceil \frac{t_{Rf} \times 10 - n_{Rf} \times 7}{3} \right\rceil \\ f_{Ri} = \begin{cases} f_{Ri4} = f_R = f_{Rf4} \\ f_{Ri3} = f_R - f_{Rf3} \end{cases}$$

Where:

^t Rf	is the number of allocated bits in one frame for fast bytes at the reference point B.
t _{Ri}	is the number of allocated bits for interleaved bytes at the reference point B.
f_{Rf} and n_{Rf}	are the numbers of fast bits in Bitmap- F_R and Bitmap- N_R , respectively.
f _{Rf3}	is the number of fast bits in Bitmap- F_R if the subframe (see Q.4.3.3) contains 3 Bitmap- F_R except
f _{Rf4}	for synch symbols. is the number of fast bits in Bitmap- F_R if the subframe contains 4 Bitmap- F_R except for synch
f _{Ri} and n _{Ri} ⁿ R	symbols. are the numbers of interleaved bits in Bitmap- F_R and Bitmap- N_R , respectively. is the number of total bits in Bitmap- N_R , which is specified in the B&G tables.

During FEXT Bitmap mode, n_{Rf} and n_{Ri} are zero.

To convert the bit rate to be a multiple of 32 kbit/s, the dummy bits for fast data are inserted to the tail of each subframe, and the dummy bits for interleaved data are inserted to the end of the Hyperframe. The number of the dummy bits shall be as follows:

If $t_{Rf} \le n_{Rmax}$:

$$dummy_{Rf} = 0$$

$$dummy_{Ri} = (f_{Ri} \times 126 + n_{Ri} \times 214) - t_{Ri} \times 340$$

If $t_{Rf} > n_{Rmax}$:

$$dummy_{Rf4} = (f_{Rf} \times 4 + n_{Rf} \times 6) - t_{Rf} \times 10$$

$$dummy_{Rf3} = (f_{Rf} \times 3 + n_{Rf} \times 7) - t_{Rf} \times 10$$

$$dummy_{Ri} = (f_{Ri4} \times 96 + f_{Ri3} \times 30) - t_{Ri} \times 340$$

If the fast data buffer uses single latency only, additional dummy bits are inserted at the tail of each FEXT symbol in the 4 Bitmap- F_R constructed subframe. The number of additional dummy bits inserted at the tail of each FEXT symbol shall be as follows:

$$dummy_{SRf} = f_{Rf3} - f_{Rf4}$$

The receiver shall determine Bitmap- F_R and Bitmap- N_R so that $dummy_{Ri}$ is less than 126, $dummy_{Rf4}$ is less than 4 and $dummy_{Rf3}$ is less than 3 in the initialization sequence. At the receiver, the inserted dummy bits shall be removed.

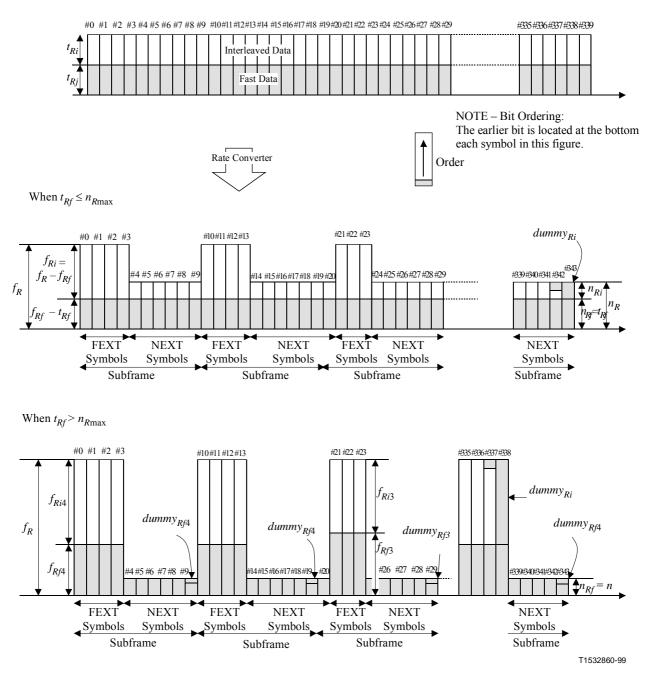


Figure Q.12/G.992.1 – Bit distribution for Rate Converter under Dual latency and Dual Bitmap mode

Q.4.5 FEXT Bitmapping (replaces 7.16)

The FEXT Bitmapping mode uses the Dual Bitmapping technique (Q.4.4) to transmit data only during FEXT. The ATU-C shall transmit only the pilot tone during the $NEXT_R$ symbol. The ATU-R disables Bitmap-N_C and shall not transmit any signal during the $NEXT_C$ symbol (see Figures Q.10 and Q.15).

Annex Q does not support the FEXT Bitmapping mode.

Q.4.6 Tone Ordering (replacement for 7.7)

A DMT time-domain signal has a high peak-to-average ratio (its amplitude distribution is almost Gaussian), and large values may be clipped by the digital-to-analogue converter. The error signal caused by clipping can be considered as an additive negative impulse for the time sample that was clipped. The clipping error power is almost equally distributed across all tones in the symbol in which clipping occurs. Clipping is therefore most likely to cause errors on those tones

that, in anticipation of a higher received SNR, have been assigned the largest number of bits (and therefore have the densest constellations). These occasional errors can be reliably corrected by the FEC coding if the tones with the largest number of bits have been assigned to the interleave buffer.

The numbers of bits and the relative gains in two bitmaps to be used for every tone are calculated in ATU-R receiver, and sent back to ATU-C according to a defined protocol (see 10.9.14). The pairs of numbers are typically stored, in ascending order of frequency or tone numbers *i*, in bit and gain tables for Bitmap- F_R and Bitmap- N_R .

For Bitmap- F_R , the "tone-ordered" encoding shall first assign f_{Rf} bits from the rate converter (see Q.4.4.2) to the tones with the smallest number of bits assigned to them, and the remaining f_{Ri} bits to the remaining tones. For Bitmap- N_R , it shall first assign n_{Rf} bits from the rate converter to the tones with the smallest number of bits assigned to them, and the remaining n_{Ri} bits to the remaining tones.

All tones shall be encoded with the number of bits assigned to them; one tone in each bitmap may therefore have a mixture of bits from the fast and interleaved buffers.

The ordered bit tables b'_{iF} and b'_{iN} shall be based on the original bit tables b_{iF} and b_{iN} as follows:

For k = 0 to 15 {

From the bit table, find the set of all *i* with the number of bits per tone $b_i = k$

Assign b_i to the ordered bit allocation table in ascending order of i

```
}
```

Two ordered bit tables for Bitmap- F_R and Bitmap- N_R shall be prepared. A complementary de-ordering procedure should be performed in ATU-R receiver. It is not necessary, however, to send the results of the ordering process to the receiver because the bit tables F_R and N_R were originally generated in ATU-R, and therefore those tables have all the information necessary to perform the de-ordering.

Q.4.7 Modulation (pertains to 7.11)

Q.4.7.1 Inverse Synchronization Symbol (replaces 7.11.4)

Except for the pilot tone, Inverse Synchronization symbol shall be generated from a tone-by-tone 180 degree phase reversal of Synchronization symbol (i.e. + maps to -, and - maps to +, for each of the 4-QAM signal constellation).

Q.4.7.2 Data subcarriers (modifies 7.11.1.1)

The channel analysis signal defined in 10.6.6 allows for a maximum of NSC-1 carriers (at frequencies $n\Delta f$, n = 1 to NSC-1) to be used.

Q.4.7.3 Nyquist frequency (modifies 7.11.1.3)

The carrier at the Nyquist frequency (#NSC) shall not be used for user data and shall be real valued; other possible uses are for further study.

Q.4.7.4 Modulation by the inverse discrete Fourier transform (replaces 7.11.2)

The modulating transform defines the relationship between the 2*NSC real values x_n and the Z_i :

$$x_n = \sum_{i=0}^{2^* NSC^{-1}} \exp\left(\frac{j\pi ni}{NSC}\right) Z_i \quad \text{for } n = 0 \text{ to } 2^* NSC^{-1}$$
(7-21)

The value of NSC shall be 1024 for this Annex. However, the PSD mask limits the highest used subcarrier index to 869.

The constellation encoder and gain scaling generate only NSC-1 complex values of Z_i . In order to generate real values of x_n , the input values (NSC-1 complex values plus zero at DC and one real value for Nyquist if used) shall be augmented so that the vector Z has Hermitian symmetry. That is,

 $Z_i = \text{conj}(Z'_{2*NSC-i})$ for i = NSC+1 to 2*NSC-1 (7-22)

Q.4.7.5 Synchronization symbol (modifies 7.11.3)

The synchronization symbol permits recovery of the frame boundary after micro-interruptions that might otherwise force retraining.

The data symbol rate, $f_{symb} = 4$ kHz, the carrier separation, $\Delta f = 4.3125$ kHz, and the IDFT size, N = 2*NSC, are such that a cyclic prefix of 15.625%*NSC samples could be used. That is, when NSC = 256, there are 40 samples in the cyclic prefix.

$$(512+40) \times 4.0 = 512 \times 4.3125 = 2208 \tag{7-23}$$

The cyclic prefix shall, however, be shortened to 12.5%*NSC samples, and a synchronization symbol (with a nominal length of NSC*2.125 samples) is inserted after every 68 data symbols. That is,

$$(2 + 0.125)$$
*NSC × 69 = $(2 + 0.15625)$ *NSC × 68 (7-24)

The data pattern used in the synchronization symbol shall be the pseudo-random sequence PRD, (d_n , for n = 1 to 2*NSC) defined by:

$$d_n = 1$$
 for $n = 1$ to 9 (7-25)
 $d_n = d_{n-4} \oplus d_{n-9}$ for $n = 10$ to 2*NSC (7-26)

The first pair of bits (d_1 and d_2) shall be used for the DC and Nyquist subcarriers (the power assigned to them is zero, so the bits are effectively ignored); the first and second bits of subsequent pairs are then used to define the X_i and Y_i for i = 1 to NSC-1 as shown in Table 7-13.

The period of the PRD is only 511 bits, so d_{n+511} is equal to d_n . The d_1 - d_9 shall be re-initialized for each synchronization symbol, so each symbol uses the same data.

The two bits that modulate the pilot carrier, shall be overwritten by $\{0,0\}$: generating the $\{+,+\}$ constellation.

The minimum set of subcarriers to be used is the set used for data transmission (i.e. those for which $b_i > 0$); subcarriers for which $b_i = 0$ may be used at a reduced PSD as defined in transmit PSD paragraphs of Annexes A, B and C. The data modulated onto each subcarrier shall be as defined above; it shall not depend on which subcarriers are used.

Q.4.7.6 Cyclic prefix (replaces 7.12)

The last 12.5%*NSC samples of the output of the IDFT (x_n for n = 2*NSC-0.125*NSC to 2*NSC-1) shall be prepended to the block of 2*NSC samples and read out to the digital-to-analogue converter (DAC) in sequence. For example, when NSC=256, the subscripts, n, of the DAC samples in sequence are 480 ... 511, 0 ... 511.


The cyclic prefix shall be used for all symbols beginning with the C-RATES1 segment of the initialization sequence, as defined in 10.6.2.

Q.4.8 ATU-C Downstream transmit spectral mask (replaces 7.14)

The downstream spectral mask of Annex Q is as specified in this section. Annex Q does not support overlapped spectrum. Therefore, C-MSG1 bit 16 shall be set to 0, and the PSD mask specified in § Q.4.8.1 shall be used.

Q.4.8.1 Downstream non-overlapped PSD mask definition

The non-overlapped PSD mask is defined with absolute peak values in Figure Q.13. The low frequency stop band is defined for frequencies below 138 kHz (tone 32); the high frequency stop band is defined at frequencies greater than 3750 kHz (tone 869). The in-band region of this PSD mask is the frequency band from 138 kHz to 3750 kHz.

0 < f < 4	-97.5
$4 \le f \le 80$	$-92.5 + 4.63 * \log 2(f/4)$
80 < f < 138	$-72.5 + 36 * \log 2(f/80)$
138 < f < 1104	-36.5
1104 < f < 1622	-36.5 - 18.0*log2(f/1104)
1622 < f < 3750	-46.5 - 2.9*log2(f/1622)
3750 < f < 3925	-76.5 - 357*log2(f/3750)
3925 < f < 12000	-100

Frequency (kHz)	PSD level (dBm/Hz)	Measurement BW
0	-97.5	100 Hz
4	-97.5	100 Hz
4	-92.5	100 Hz
10	interpolated	10 kHz
80	-72.5	10 kHz
138	-44.2	10 kHz
138	-36.5	10 kHz
1104	-36.5	10 kHz
1622	-46.5	10 kHz
3750	-50	10 kHz
3750	-76.5	10 kHz
3925 - 12000	-100	10 kHz

Additionally the PSD mask shall satisfy the following requirements:

Frequency (kHz)	PSD level (dBm/Hz)	Measurement BW
3925	-100	1 MHz
4545	-110	1 MHz
7225	-112	1 MHz
12000	-112	1 MHz

NOTE 1 – All PSD measurements are in 100 Ω ; the POTS band total power measurement is in 600 Ω .

- NOTE 2 The breakpoint frequencies and PSD values are exact; the indicated slopes are approximate. The breakpoints in the tables shall be connected by linear straight lines on a dB/log(f) plot.
- NOTE 3 MBW specifies the Measurement Bandwidth. The MBW specified for a certain breakpoint with frequency fi is applicable for all frequencies satisfying fi< $f \le fj$, where fj is the frequency of the next specified breakpoint.
- NOTE 4 The power in a 1 MHz sliding window is measured in a 1 MHz bandwidth, starting at the measurement frequency i.e. power in the [f, f + 1 MHz] window shall conform to the specification at frequency f.

- NOTE 5 The step in the PSD mask at 4 kHz is to protect V.90 performance. Originally, the PSD mask continued the 21 dB/octave slope below 4 kHz hitting a floor of -97.5 dBm/Hz at 3400 Hz. It was recognized that this might impact V.90 performance, and so the floor was extended to 4 kHz.
- NOTE 6 All PSD and power measurements shall be made at the U-C interface.

Figure Q.13: Non-overlapped Downstream Channel PSD Mask

Spectral Shaping of the In-Band Region defined in Q.4.8.2 and Transmit Signals with Limited Transmit Power defined in Q.4.8.3 shall be applied.

Q.4.8.2 Spectral Shaping of the In-Band Region of the PSD Spectrum

In order to shape the ATU-C PSD, frequency dependent gains, called spectral shaping values (ssv_i), shall be applied on each tone during initialization and showtime. The ssv_i values shall be represented with 1 bit before and 10 bits after the decimal point.

Table Q.2 defines the corner points for the nominal PSD shape of the inband region as gain in dB, i.e log_ssv_i . Log_ssv_i on other tones shall be linearly interpolated between corner points on a logarithmic scale for the gain (dB) and a linear scale for the frequency (Hz). Note that the corner points defined in Table Q.2 are relative values.

The spectral shaping values shall be converted from logarithmic scale (log_ssv_i , dB values) to linear ssv_i values according to:

$$ssv_i = \frac{Round\left(1024 \times 10^{\frac{\log_s ssv_i}{20}}\right)}{1024}$$

These points are not passed at initialization for the nominal PSD shape but are provided here for reference. However, for additional spectral shaping (see Q.4.8.4), parameters are passed during G.994.1.

The combined accuracy of the process of linear interpolation of the log_ssvi values and the process of conversion to linear ssv_i values shall be strictly less than one half lsb of the 10 bit after the decimal point format of the linear ssvi values. No error shall be introduced when log_ssv_i equals 0dB or is interpolated between log_ssv_i values, which equal 0dB.

- NOTE 1: The above definition ensures that the maximum deviation between ssv_i values used by transmitter and receiver is one lsb.
- NOTE 2: The above needs an accuracy that is strictly < 1/2 lsb. An accuracy of = 1/2 lsb, will lead to inaccurate results.

Tone Index	$Log_ssv_i(dB)$	Comments
32	0	138 kHz defines the beginning of the inband region. No shaping is applied in
		the low stop band.
256	0	1104 kHz
376	-10	1622 kHz (-10 = -50 - Nominal PSD lowband)
869	-13.5	3750 kHz (-13.5 = -53.5 - Nominal_PSD_lowband)

Table Q.2:	Corner points for	the non-overlapped	nominal in-band PSD shape.
------------	-------------------	--------------------	----------------------------

The absolute values of the transmit PSD are obtained by scaling the relative shaping values with a NOMINAL_PSD_lowband, defined for the lower in-band frequencies. Note that the nominal in-band transmit PSD is frequency dependent. The NOMINAL_PSD_lowband is -40 dBm/Hz (flat from 138 kHz to 1104 kHz) for the non-overlapped spectrum.

NOTE 3: In-band PSD spectral shaping is applied prior to the IFFT.

NOTE 4: The value of MAXNOMATPds may be limited by regional regulations.

Q.4.8.3 Transmit Signals with Limited Transmit Power

For cases where the transmit signal must be limited to a maximum aggregate total power (e.g. $ATP_{dsmax} = +20 \text{ dBm}$), then

- a) During initialization the PSD transmit level is specified as an offset from the nominal value, i.e. (Nominal_PSD_lowband + ssvi x power cutback) dB, and all values of gi = 1 for the offset value x and power cutback. The value of x shall be the greater of 0 dB and (21.1 ATPdsmax) dB. For ATPdsmax = 20 dBm, the corresponding value of x shall be 1.1 dB.
- b) If bi>0, then valid range for gi is [-14.5 to +2.5+x] (dB);
 If bi>0, then gi shall be in the [g_{sync} 2.5 to g_{sync} + 2.5] (dB) range;
 If bi=0, then gi shall be equal to 0 (linear) or in the [-14.5 to g_{sync}] (dB) range;
 For G.992.1 annex Q, g_{sync} <= x dB

The g_i values shall be constrainted by following relation:

Constraint on g _i values	$\sum_{i=6}^{511} ssv_i^2 * g_i^2 \le \sum_{i=6}^{511} ssv_i^2$
-------------------------------------	---

Q.4.8.4 Additional inband spectral shaping

An ATU-R may request additional downstream inband spectral shaping by passing parameters to the ATU-C in a G.994.1 CLR, MP, or MS message. The ATU-C may select additional downstream inband spectral shaping by passing parameters to the ATU-R in a G.994.1 CL or MS message. Within the framework of G.994.1, the ATU-C has the ability to make the final decision on the downstream inband PSD shape to be used.

The additional inband spectral shaping parameters are listed in Q.7.2.2 and defined in Q.7.3. If the Additional inband spectral shaping Spar(2) bit is set to ONE in Table Q.6.2, its associated Npar(3) octets in Tables Q.6.2.1 to Q.6.2.1.5 define the inband spectral shape. If the additional inband spectral shaping Spar(2) bit is set to ZERO, its associated Npar(3) octets are not transmitted and the nominal inband PSD shape defined in Q.4.8.2 shall be used. These Npar(3) octets define the downstream PSD levels in the low band (between 138 and 1104 kHz), at 1622 kHz and at 3750 kHz. The PSD levels between 1104 kHz and 1622 kHz, and between 1622 kHz and 3750 kHz are linearly interpolated in log scale. The defined values are the PSD level in dB below the NOMINAL_PSD_lowband of -40dbm/Hz. For example, if all three values are set to 20 dB, the result will be a flat PSD of -60dbm/Hz. If the three values are set to 2 dB, 12 dB and 15.5 dB, the result is the PSD defined in Q.4.8.1 reduced by 2dB. In order not to violate the PSD mask defined in Q.4.8.1, the second value shall be no less than 10 dB and the third value shall be no less than 13.5 dB.

Q.4.8.5 Egress control

G.992.1 Annex Q equipment shall be able to reduce the PSD below -80 dBm/Hz for the Amateur radio bands between 1.81 MHz and 2.00 MHz, and between 3.5 MHz and 3.8 MHz. The ATU-C may apply additional spectral shaping as described in Q.4.8.4 to help achieve this requirement.

Q.4.9 Support of higher downstream bit rates with S = 1/2n (replaces 7.6.4)

With a rate of 4000 data frames per second and a maximum of 255 bytes (maximum RS codeword size) per data frame,

the ADSL downstream line rate is limited to approximately 8 Mbit/s per latency path. The line rate limit can be increased beyond this for the interleaved path by mapping 2n RS codewords into one FEC data frame (i.e. by using S = 1/2n in the interleaved path). S = 1/2n shall be used in the downstream direction only over bearer channel AS0.

For a selected value of $n \ge 1$, the K_I data bytes per interleaved mux data frame shall be packed into 2n RS codewords, split into n equal parts, each consisting of 2 consecutive RS codewords. This forces rate adaptation to occur in 32n kbit/s increments. Each of the n parts of the data frame shall begin with a sync byte and shall obey the rules defined in Table Q.3 for insertion of dummy bytes. The smallest value of n that can support the K_I data bytes shall be used.

Support of S = 1/2 (i.e., n=1), S = 1/4 (i.e., n=2), S = 1/6 (i.e., n=3), and S = 1/8 (i.e., n=4), is mandatory.

The resulting data frame structure shall be as shown in Figure Q.14.

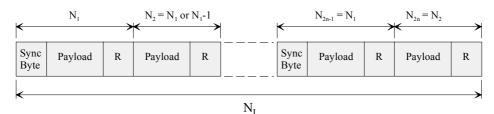


Figure Q.14 – Data frame for S = 1/2n mode

When K_I is divisible by 2n, the 2n codewords have the same length $N_{2i-1} = N_{2i} = (K_I/2n + R_I)$ for i = 1 to n, otherwise the odd numbered codewords are equal and are one byte longer than the even numbered codewords, i.e. $N_{2i-1} = (K_I + n)/2n + R_I$ bytes, and $N_{2i} = (K_I - n)/2n + R_I$ bytes for i = 1 to n. For the FEC output data frame, $N_I = \sum_{i=1}^{n} N_i$, with $N_I < 512n - 1$ bytes.

The convolutional interleaver requires all codewords to have the same odd length. To achieve the odd codeword length, insertion of dummy (not transmitted) bytes may be required. For S = 1/2n, the dummy byte addition to the odd numbered and/or even numbered codewords at the input of the interleaver shall be as in Table Q.3.

N _{2i-1}	N _{2i}	Dummy Byte Insertion Action
Odd	Odd	No action
Even	Even	Add one dummy byte at the beginning of all codewords
Odd	Even	Add one dummy byte at the beginning of each even numbered codeword
Even	Odd	Add one dummy byte at the beginning of each odd numbered codeword and two dummy bytes at the beginning of each even numbered codeword [the de-interleaver shall insert one dummy byte into the de-interleaver matrix on the first byte and the $(D + 1)$ th byte of the corresponding codeword to make the addressing work properly]

Table Q.3/G.992.1 –Dummy byte insertion at interleaver input for S = 1/2n

Q.5 ATU-R Functional Characteristics (pertains to clause 8)

Q.5.1 Framing (pertains to 8.4)

Q.5.1.1 Superframe structure (replaces 8.4.1.1)

The superframe structure of ATU-R transmitter is identical to that of ATU-C transmitter, as specified in Q.4.3.1.

Q.5.1.2 Hyperframe structure (replaces 8.4.1.3)

The hyperframe structure of ATU-R transmitter is functionally similar to that of ATU-C transmitter, except that the inverse synch symbol is used in the 1st superframe (SPF#0) (see Figure Q.15). The hyperframe is composed of 345 DMT symbols, numbered from 0 to 344. Each symbol is under $FEXT_C$ or $NEXT_C$ duration (see Q.5.3), and the following numerical formula gives the information which duration N_{dmt} -th DMT symbol belongs to at ATU-R transmitter (see Figure Q.16).

 $\label{eq:states} \begin{array}{ll} \mbox{For $N_{dmt}=0, 1, \ldots, 344$} \\ \mbox{$S=272 x N_{dmt} mod 2760} \\ \mbox{$if $\{$ (S > a)$ and $(S + 271 < a + b)$ $\}$} \\ \mbox{$else$} \\ \mbox{$where $a=1315, b=1293$} \end{array} \qquad \begin{array}{ll} \mbox{then $FEXT_C$ symbol} \\ \mbox{$then $NEXT_C$ symbol} \\ \mbox{$then $then $NEXT_C$ symbol} \\ \mbox{$then $then t

128 DMT symbols are allocated in the FEXT_{C} duration, and 217 DMT symbols are allocated in the NEXT_{C} duration. The symbols are composed of:

FEXT _C symbol:	
Number of symbol using $Bitmap-F_C$	= 126
Number of synch symbol	= 1
Number of inverse synch symbol	= 1
NEXT _C symbol:	
Number of symbol using Bitmap-N _C	= 214
Number of synch symbol	= 3

During FEXT Bitmapping mode, the ATU-R shall not transmit any signal.

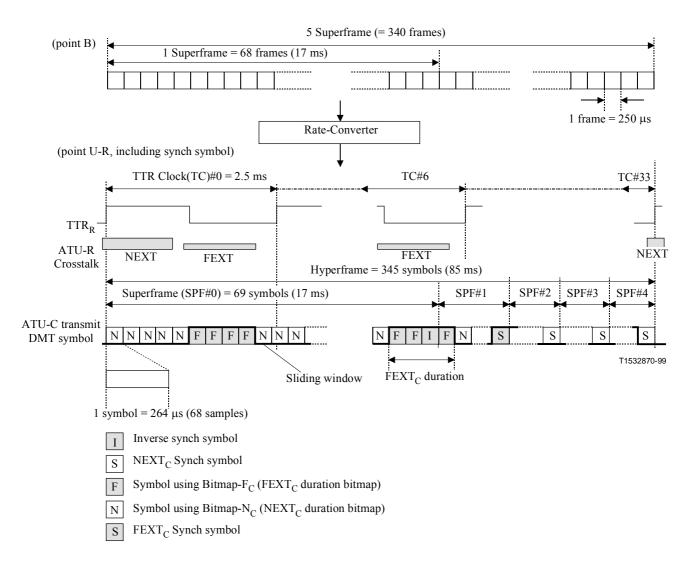


Figure Q.15/G.992.1 – Hyperframe structure for upstream

TTD										
TTR _R										
0	0 1 2 3 4 5 6 7 8 9									
1	10 11 12 13 14 15 16 17 18 19									
2	20 21 22 23 24 25 26 27 28 29									
3	30 31 32 33 34 35 36 37 38 39 40									
4	41 42 43 44 45 46 47 48 49 50									
5	51 52 53 54 55 56 57 58 59 60									
6	61 62 63 64 65 66 67 ISS 69 70									
7	71 72 73 74 75 76 77 78 79 80									
8	81 82 83 84 85 86 87 88 89 90									
9	91 92 93 94 95 96 97 98 99 100 101									
10	101 102 103 104 105 06 107 108 109 110 111									
11	112 113 114 115 1 6 117 118 119 120 21									
12	122 123 124 125 126 127 128 129 130 131									
13	132 133 134 135 136 SS 138 139 140 144									
14	142 143 144 145 146 147 148 149 150 151									
15	152 153 154 155 156 157 158 159 160 161									
16	162 163 164 165 166 167 168 169 170 171 172									
17	173 174 175 176 77 178 179 180 181 82									
18	183 184 185 186 187 188 189 190 191 92									
19	193 194 195 196 197 198 199 200 201 202									
20	203 204 205 SS 207 208 209 210 211 212									
21	213 214 215 216 217 218 219 220 221 222									
22	223 224 225 226 227 228 229 230 231 232									
23	233 234 235 236 237 238 239 240 241 242 243									
24	244 245 246 247 248 249 250 251 252 253									
25	254 255 256 257 258 259 260 260 262 263									
26	264 265 266 267 268 269 270 271 272 273									
27	274 <i>SS</i> 276 277 278 279 280 281 282 283									
28	284 285 286 287 288 289 290 291 292 293									
29	294 295 296 297 298 299 300 301 302 303									
30	304 305 306 307 308 309 310 311 312 313 314									
31	315 316 317 318 319 320 321 322 323 324									
32	325 326 327 328 329 330 331 332 333 334									
33	335 336 337 338 339 340 341 342 343 55									
	ISS Inverse synch symbol SS FEXT _R Synch symbol SS NEXT _R synch symbol									
	FEXT _R data symbol NEXT _R data symbol T1535340-00									

Figure Q.16/G.992.1 – Symbol pattern in a hyperframe with cyclic prefix – Upstream

Q.5.1.3 Subframe structure (replaces 8.4.1.4)

A subframe is 10 consecutive DMT symbols (except for synch symbols) as shown in Table Q.4. The 34 subframes form a hyperframe.

Subframe No.	DMT symbol No.	Note
0	0-9	
1	10-19	
2	20-29	
3	30-39	
4	40-49	
5	50-59	
6	60-70	#68 is Inverse Synch Symbol
7	71-80	
8	81-90	
9	91-100	
10	101-110	
11	111-120	
12	121-130	
13	131-141	#137 is Synch Symbol
14	142-151	
15	152-161	
16	162-171	
17	172-181	
18	182-191	
19	192-201	
20	202-212	#206 is Synch Symbol
21	213-222	
22	223-232	
23	233-242	
24	243-252	
25	253-262	
26	263-272	
27	273-283	#275 is Synch Symbol
28	284-293	
29	294-303	
30	304-313	
31	314-323	
32	324-333	
33	334-344	#344 is Synch Symbol

Table Q.4/G.992.1 – Subframe (upstream)

Q.5.2 Dual Bitmapping and rate conversion (replaces 8.15)

The function of the rate converter (see Q.5.2.2), tone ordering (see Q.5.4), constellation encoding, and gain scaling shall use one of two bitmaps stored in the ATU. This method is called the dual bitmap.

Q.5.2.1 Dual Bitmap (new)

The Dual Bitmap switching shall be the same as for the downstream data, specified in Q.4.4.1. The number of bits and the relative gains to be used for every tone are calculated in the bit loading algorithm during the initialization sequence, and transmitted in C-B&G.

Q.5.2.2 Rate Converter (new)

The rate converter buffering changes the data frame boundaries between the reference points B and C according to Bitmap- F_C , Bitmap- N_C and the Sliding Window. Two independent rate converters are prepared for fast data and interleaved data. The amounts of fast and interleaved data in Bitmap- F_C and Bitmap- N_C shall be calculated in the following formulae:

If $t_{Cf} \le n_{Cmax}$:

$$n_{Cf} = t_{Cf}$$
$$n_{Ci} = n_C - n_{Cf}$$
$$f_{Cf} = t_{Cf}$$
$$f_{Ci} = f_C - f_{Cf}$$

If $t_{Cf} > n_{Cmax}$:

$$n_{Cf} = n_{C \max}$$

$$n_{Ci} = 0$$

$$f_{Cf4} = \left[\frac{t_{Cf} \times 10 - n_{Cf} \times 6}{4}\right]$$

$$f_{Cf3} = \left[\frac{t_{Cf} \times 10 - n_{Cf} \times 7}{3}\right]$$

$$f_{Ci} = \begin{cases} f_{Ci4} = f_C - f_{C4} \\ f_{Ci3} = f_C - f_{Cf3} \end{cases}$$

Where:

^t Cf	is the number of allocated bits in one frame for fast bytes at the reference point B.
^t Ci	is the number of allocated bits for interleaved bytes at the reference point B.
f_{Cf} and n_{Cf}	are the numbers of fast bits in Bitmap- F_C and Bitmap- N_C , respectively.
fCf3	is the number of fast bits in Bitmap-F _C if the subframe (see Q.5.1.3) contains 3 Bitmap-F _C except
f _{Cf4}	for synch symbols. is the number of fast bits in Bitmap- F_C if the subframe contains 4 Bitmap- F_C except for synch
f _{Ci} and n _{Ci}	symbols. are the numbers of interleaved bits in Bitmap-F _C and Bitmap-N _C , respectively.
ⁿ C	is the number of total bits in Bitmap- N_C , which is specified in the B&G tables.

During FEXT Bitmap mode, n_{Cf} and n_{Ci} are zero.

To convert the bit rate to be a multiple of 32 kbit/s, the dummy bits for fast data are inserted to the tail of each subframe, and the dummy bits for interleaved data are inserted to the end of the Hyperframe. The number of the dummy bits shall be as follows:

If $t_{Cf} \le n_{Cmax}$:

$$dummy_{Cf} = 0$$
$$dummy_{Ci} = (f_{Ci} \times 126 + n_{Ci} \times 214) - t_{Ci} \times 340$$

If $t_{Cf} > n_{Cmax}$:

$$dummy_{Cf 4} = (f_{Cf} \times 4 + n_{Cf} \times 6) - t_{Cf} \times 10$$

$$dummy_{Cf 3} = (f_{Cf} \times 3 + n_{Cf} \times 7) - t_{Cf} \times 10$$

$$dummy_{Ci} = (f_{Ci4} \times 96 + f_{Ci3} \times 30) - t_{Ci} \times 340$$

If the fast data buffer uses single latency only, additional dummy bits are inserted at the tail of each FEXT symbol in the 4 Bitmap- F_C constructed subframe. The number of additional dummy bits inserted at the tail of each FEXT symbol shall be as follows:

$$dummy_{SCf} = f_{Cf3} - f_{Cf4}$$

The receiver shall determine Bitmap-F_C and Bitmap-N_C so that $dummy_{Ci}$ is less than 126, $dummy_{Cf4}$ is less than 4 and $dummy_{Cf3}$ is less than 3 in the initialization sequence. At the receiver, the inserted dummy bits shall be removed.

Q.5.3 FEXT Bitmapping (replaces 8.16)

The FEXT Bitmapping mode uses the Dual Bitmapping technique (Q.4.4) to transmit data only during FEXT. The ATU-C shall transmit only the pilot tone during the NEXT_R symbol. The ATU-R disables Bitmap-N_C and shall not transmit any signal during the NEXT_C symbol (see Figures Q.10 and Q.15).

Annex Q does not support the FEXT Bitmapping mode.

Q.5.4 Tone Ordering (pertains to 8.7)

The tone ordering algorithm shall be the same as for the downstream data, specified in Q.4.4.

For Bitmap-F_C, the "tone-ordered" encoding shall first assign f_{Cf} bits from the rate converter (see Q.5.2.2) to the tones with the smallest number of bits assigned to them, and the remaining f_{Ci} bits to the remaining tones. For Bitmap-N_C, it shall first assign n_{Cf} bits from the rate converter to the tones with the smallest number of bits assigned to them, and the remaining n_{Ci} bits to the remaining tones. Two ordered bit tables for Bitmap-F_C and Bitmap-N_C shall be prepared.

Q.5.5 Modulation (pertains to 8.11)

Q.5.5.1 Inverse synchronization symbol (replaces 8.11.4)

Inverse Synchronization symbol shall be generated from a tone-by-tone 180 degree phase reversal of Synchronization symbol (i.e. + maps to -, and - maps to +, for each of the 4-QAM signal constellation).

Q.5.5.2 Gain scaling in synchronization symbol (new)

At initialization time, the sync symbol reference transmit PSD level shall be set at the nominal PSD level +10log(g_{sync}^2) dBm/Hz, with g_{sync}^2 defined as the average g_i^2 value over the used (i.e. $b_i > 0$) subcarriers in the NEXT or FEXT bitmap, whichever results in the highest average gain. The sync symbol reference transmit PSD shall not be updated with used subcarrier gain changes during SHOWTIME.

Q.5.6 ATU-R Upstream Transmit Spectral Mask (supplements 8.14)

The upstream spectral mask of Annex Q uses the same mask as Annex A.

Q.6 EOC Operation and Maintenance (pertains to clause 9)

Q.6.1 ADSL line related primitives (supplements 9.3.1)

Q.6.1.1 ADSL line related near-end defects (supplements 9.3.1.3)

Two near-end defects are further defined:

- Loss-of-signal (LOS): The ADSL power shall be measured only in the FEXT_C duration at ATU-C, or only in the FEXT_R duration at ATU-R.
- Severely errored frame (SEF): A SEF defect occurs when the content of two consecutively received ADSL synchronization symbols in the FEXT_C duration at ATU-C, or in the FEXT_R duration at ATU-R, does not correlate with the expected content over a subset of the tones. An SEF defect terminates when the content of two consecutively received ADSL synchronization symbols in the FEXT_C duration at ATU-C, or in the FEXT_R duration at ATU-C, or in the FEXT_R duration at ATU-R, correlate with the expected contents over the same subset. The correlation method, the selected subset of tones, and the threshold for declaring these defect conditions are implementation discretionary.

Q.6.1.2 ADSL line related far-end defects (supplements 9.3.1.4)

Loss-of-signal is further defined:

• Loss-of-signal (LOS): The ADSL power shall be measured only in the FEXT_C duration at ATU-C, or only in the FEXT_R duration at ATU-R.

Q.6.2 Test Parameters (supplements 9.5)

Q.6.2.1 Near-end test parameters (supplements 9.5.1)

The near-end primitives are further defined:

- *Attenuation (ATN)*: The received signal power shall be measured only in the FEXT_C duration at ATU-C, or only in the FEXT_R duration at ATU-R.
- Signal-to-Noise ratio (SNR) margin: During FEXT Bitmap mode, this primitive represents the snr margin in the FEXT_C duration at ATU-C, or in the FEXT_R duration at ATU-R.

Q.6.2.2 Far-end test parameters (supplements 9.5.2)

The far-end primitives are further defined:

- *Attenuation (ATN)*: The received signal power shall be measured only in the FEXT_C duration at ATU-C, or only in the FEXT_R duration at ATU-R.
- Signal-to-Noise ratio SNR margin: During FEXT Bitmap mode, this primitive represents the snr margin in the FEXT_C duration at ATU-C, or in the FEXT_R duration at ATU-R.

Q.6.3 Data registers in the ATU-R (supplements 9.2.4)

For the S=1/2n framing mode (see §Q.4.9), the downstream RS_I shall be the number of parity bytes per sync byte, i.e., $RS_I = R_I/(n^*S)$.

Q.7 Initialization (pertains to clause 10)

Q.7.1 Initialization with Hyperframe (replaces 10.1.5)

The exchange of messages between ATU-C and ATU-R should be performed in FEXT_{C} and FEXT_{R} . The DMT symbol has two symbol rates: one is 4.3125 kbaud for the symbol without a cyclic prefix, and the other is 4 x 69/68 kbaud for the symbol with a cyclic prefix. 32 times of the TTR has the same period as 345 times of the 4.3125 kbaud, and 34 times of the TTR is the same as 345 times of 4 x 69/68 kHz.

During FEXT Bitmap mode, the ATU-R shall not transmit any signal during the NEXT_C symbols duration and the ATU-C shall transmit only the pilot tone as the NEXT_R signal except:

- C-PILOT1 (C-PILOT1A) which is accompanied by a signal to allow the ATU-C to indicate the phase of TTR_C to the ATU-R (see Q.7.4.1);
- C-QUIETn where no signal is transmitted.

The ATU-C begins transmitting C-PILOT1 at the beginning of the hyperframe without cyclic prefix. The ATU-C informs the phase of the TTR_C to ATU-R during C-PILOT1. The ATU-R begins transmitting R-REVERB1 at the beginning of the hyperframe without cyclic prefix. The ATU-R performs the training of any receiver equalizer using this phase information of the TTR_R generated from received TTR_C .

From C-PILOT1 to C-SEGUE1, the following numerical formula gives the information which duration N_{dmt}-th DMT symbol belongs to at ATU-R (see Figure Q.17).

For $N_{dmt} = 0, 1, \dots 344$ $S = 256 \times N_{dmt} \mod 2760$ if { (S + 255 < a) or (S > a + b) } else where a = 1243, b = 1461

then $FEXT_R$ symbols then $NEXT_R$ symbols

In order to enter C-RATES1 at the beginning of the hyperframe with cyclic prefix, the number of symbols from C-PILOT1 to C-SEGUE1 shall be a multiple of 345 DMT symbols.

From R-REVERB1 to R-SEGUE1, the following numerical formula gives the information which duration N_{dmt}-th symbol belongs to at ATU-C (see Figure Q.18).

For $N_{dmt} = 0, 1, ..., 344$, $S = 256 \times N_{dmt} \mod 2760$ if { (S > a) and (S + 255 < a + b) } then FEXT_C symbols else then NEXT_C symbols where a = 1315, b = 1293

From C-RATES1 to C-SEGUE3, the number of symbols is a multiple of 345 DMT symbols. The following numerical formula gives the information which duration N_{dmt} -th DMT symbol belongs to. ATU-C transmits the message data in FEXT_R symbols (see Figure Q.11).

 $\label{eq:states} \begin{array}{l} \mbox{For $N_{dmt}=0, 1, ..., 344$} \\ \mbox{$S=272 $ x N_{dmt} mod 2760} \\ \mbox{$if $\{$ (S+271 \ge a)$ and $(S \le a+b)$ $\}$} \\ \mbox{$else$} \\ \mbox{$where $a=1243$, $b=1461$} \end{array} \qquad \mbox{then $FEXT_R$ symbols} \\ \end{array}$

The ATU-R enters R-REVERB3 at the beginning of the hyperframe with cyclic prefix, which is extracted from received signal. From R-REVERB3 to R-SEGUE5, the number of symbols is a multiple of 345 DMT symbols. The following numerical formula gives the information which duration N_{dmt} -th DMT symbol belongs to. ATU-R transmits the message data in FEXT_C symbols (see Figure Q.16).

For $N_{dmt} = 0, 1, ..., 344$ $S = 272 \times N_{dmt} \mod 2760$ if { (S > a) and (S + 271 < a + b) } then FEXT_C symbols else then NEXT_C symbols where a = 1315, b = 1293

TTD	
11K	r

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	86 97 108 11 29 140 151 162 1 83	33 44 55 6 76 87 98 105 9 130 141 152 2 16	23 34 34 45 56 56 6 77 77 88 99 11 20 131 142 153	67 78 89 10 121 132 14	46 57 6 9 100 111 1 2 43 154 16	25 36 28 79 90 22 133 11 22 133 55	47 58 6 101 112 112 113 44 155 16	6 37 4 9 80 91 11 23 134 12	+8 59 7 102 113 1	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	60 71 8 03 114 12	8 39 50 32 93 10	51 72 4 115 12 '	9 40 51 33 94 10	62 73 73 8 95 116 12	41 52 34 95 1(63 74 74 06 117 12	42 53 64 4 85 96 107 11
$\begin{array}{c} 2 \\ 3 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 7 \\ 8 \\ 8 \\ 8 \\ 9 \\ 9 \\ 10 \\ 11 \\ 12 \\ 12 \\ 12 \\ 13 \\ 11 \\ 12 \\ 12$	22 32 43 54 65 5 7 86 97 108 97 108 11 29 140 151 162 183	2 33 44 55 6 76 87 98 105 9 130 141 152 16 73	23 34 34 45 56 6 77 88 99 11 20 131 142 153 3 1	24 35 2 5 667 78 89 10 121 132 14 133 664	46 57 6 9 100 111 2 154 43	25 36 28 79 90 22 133 11 22 133 55	47 58 6 101 112 113 44 155 16	6 37 4 9 80 91 11 23 134 12	1 18 59 7 1 02 113 1 45 156	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	22 60 71 60 71 114 12 6	39 50 82 93 10 25 136 147	29 51 72 4 115 12	40 51 33 94 10 26 137	30 62 73 5 116 12	41 52 34 95 1(7 138	3 2 63 74 2 06 117 12	1 42 53 64 4 64 85 96 107 11 28 139
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	32 43 54 65 5 7 86 97 108 11 29 140 151 162 1 83	33 44 55 6 76 87 98 109 9 1 130 141 152 16 73 9	34 45 56 6 77 88 99 91 120 131 142 153 3 1	35 67 78 81 10 121 132 14 132 14 133 64	46 57 6 9 100 111 1 2 43 154 16	36 2 58 79 90 11 22 133 11 22 133 55	47 58 6 101 112 112 113 44 155 16	37 4 9 80 91 11 23 134 12	113 156	38 49 0 81 92 10 24 135 140	60 71 8 03 114 12 6	39 50 82 93 10 25 136 147	51 72 4 115 12	40 51 33 94 10 26 137	62 73 62 73 5 116 12	41 52 34 95 1(7 138		42 53 64 85 96 107 11 28 139
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	43 54 65 5 7 108 97 108 11 29 140 151 162 11 83	44 55 6 76 87 98 109 1 130 141 152 16 73	45 56 77 88 99 11 20 131 142 152 3 1	67 78 89 10 121 132 14 3 64	46 57 6 9 100 111 2 43 154 16	22 1 22 133 1 55	47 58 6 101 112 1 3 44 155 16	4 9 80 91 134 12	59 7 02 113 1 45 156	49 0 81 92 10 3 24 135 140	60 71 8 03 114 12 6	50 32 93 10 25 136 147	51 72 4 115 12 '	51 33 94 10 26 137	62 73 73 8 95 116 12	52 34 95 10 7 138	63 74 74 06 117 12	53 64 85 96 107 11 28 139
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	54 65 5 7 86 97 108 11 29 140 151 162 1 83	55 6 76 87 98 105 9 130 141 152 16 73	56 6 77 88 99 11 20 131 142 153 3 1	67 78 78 10 121 132 14 3 64	57 6 9 100 111 2 43 154 16	1 1 22 133 1. 55	58 6 101 112 112 44 155 16	9 80 91 11 23 134 12	59 7 02 113 1 45 156	0 81 92 10 3 24 135 140	60 71 8 03 114 12 6	32 93 10 25 136 147	51 72 4 115 12 '	33 94 10 26 137	62 73 73 8 95 116 12	34 95 10 7 138	63 74 74 06 117 12	64 85 96 107 11 28 139
$\begin{array}{c} 6 \\ 7 \\ 7 \\ 8 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 12 \\ 12 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 10 \\ 19 \\ 20 \\ 21 \\ 22 \\ 22 \\ 22 \\ 23 \\ 23 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 1$	65 5 86 97 108 111 29 140 151 162 1 83	6 76 87 98 109 9 130 141 152 16 73	6 77 88 99 0 11 20 131 142 152 3 1	67 78 89 10 121 132 14 3 64	6 9 100 111 2 43 154 16	79 90 1 22 133 1 55	6 0 101 112 1 3 44 155 16	80 91 1 23 134 1 ²	7 02 113 1 45 156	0 81 92 10 3 24 135 140	71 8 13 114 12 6	82 93 10 25 136 147	72 4 115 12 '	33 94 10 26 137	73 8 05 116 12	34 95 10 7	74 1 06 117 12	4 96 96 107 11 28 139
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5 7 86 97 108 11 29 1 140 1 151 162 183	76 87 98 109 9 1 130 141 152 16 73 1	77 88 99 11 20 131 142 152 3 1	78 89 10 121 132 14 3 64	9 100 111 11 2 43 154 16	79 90 1 22 133 1 55	0 101 112 112 44 155 16	80 91 1 23 134 1 ²	102 113 1 1 45 156	81 92 10 24 135 14)3 114 12 6	32 93 10 25 136 147	4 115 12 '	33 94 1(26 137)5 116 12	34 95 1(7 38)6 117 12	85 96 107 11 28 139
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	86 97 108 11 29 140 151 162 1 83	87 98 109 9 130 141 152 16 73	88 99 11 20 131 142 153 3	89 10 121 132 14 3 64	100 111 1 2 43 154 16	90 1 22 133 13 55	0 101 112 1 44 155 16	91 1 23 134 1 ²	102 113 1 1 45 156	92 10 3 24 135 140)3 114 12 6	93 10 25 136 147	4 115 12	94 1(26 137)5 116 12	95 1(7 138)6 117 12	96 107 11 28 139
$\begin{array}{c} 9 \\ 10 \\ 11 \\ 12 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ 21 \\ 22 \\ 22 \\ 23 \\ 23 \\ 1 \end{array}$	97 108 11 29 140 151 162 1 83	98 109 9 130 141 152 16 73	99 20 131 142 153 3	121 132 132 14 3 64	100 111 1 2 43 154 16	1 22 133 1 55	101 112 112 113 44 155 16	1 23 134 1 ²	02 113 1 45 156	10 3 24 135 140	114 12 6	10 25 136 147	115 12	10 26 137	116 12	10 7 138	117	107 11 28 139
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	108 11 29 1 140 1 151 162 1 1 83 1	109 9 1 130 141 152 16 73 1	11 20 131 142 153 3	10 121 132 1 ⁴ 3 64	111 1 2 43 154 16	1 22 133 1 ⁴ 55	112 1 44 155 16	23 134 1 ²	113 1 45 156	24 135 14	114 12 6	25 136 147	115 12	26	116 12	7	117	11 28 139
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	11 29 1 140 1 151 162 1 1 83 1	9 1 130 141 141 152 2 16 73 1	20 131 142 153 3 1	121 132 1 ⁴ 3 64	1 2 43 154 16	22 133 1 ⁴ 55	1 3 44 155 16	23 134 14	1 45 156	24 135 14	12 1 6	25 136 147	12 1	6 137	12	138	12	28 139
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	29 1 140 1 151 162 1 83	130 141 152 16 73	131 142 153 3 1	132 14 3 64	2 43 154 16	133 1. 55	44 155 16	134 14	45 156	135 14	6	136 147	1 '	137		138		139
13 1 14 1 15 1 16 1 17 14 18 1 19 20 21 22 22 2 23 2	140 151 162 83	141 152 16 73	142 153 3 1	14 3 64	43 154 16	1 55	44 155 16	14	45 156	14	6	147	′				_	
14 15 16 17 18 18 1 19 1 20 22 21 22 22 2 23 1	151 162 1 ¹ 83	152 16 73	153 13 1	3 64	154 16	55	155 16	Г	156	L		_		14	b	14	>	
15 16 17 11 18 1 19 20 21 22 22 2 23 23	162 1 83	73 16	3 1	64	16		16			1	57		50	1 1	59	1 1	60	161
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	83	73						2		7	168	_	169		170		171	
17 18 18 1 19 20 21 22 22 2 23 2	.83		171	115		176		77	_	/ 178	_	<u>,</u> 79		80	-	81	-	82
18 1 19 20 21 22 22 2 23			185	18		18		188		189	+	190		191	<u> </u>	192	$\frac{1}{1}$	193
$ \begin{array}{c c} 19 \\ 20 \\ 21 \\ 22 \\ 22 \\ 23 \\ \end{array} $	194	195	196		<u> </u>	_	198		.99	20)0	20	1	20)2	20)3	204
21 22 22 2 23										214	21;							
22 2 23	21	6 2	17	218	2	19	2	20	22	21	22	2	22	3	22	4	22	5
23	26 2	227	228	229)	230)	231		232	2	233	2	234	2	235		236
	237	238	239	24	40	24	41	24	2	243	3	244	Τ	245	5	246	5	247
24 🗍	248	249	250)	251		252		253	2	54	2	55	2	56	2	57	258
·	259	26	0 2	61	26	2	26	3	264	4	265		266		267		268	26
25	27	70 2	271	272	2	273	2	74	2	275	27	76	27	77	27	78	2	79
26 23	80	281	282	28	3	28	4	28	5	286		287		288		289		290
27 2	291	292	293	2	294	2	295	2	96	29		29	8	29	9	30	0	301
28	302	303	30	4	305	;	306	-	307		308		09		310		311	31:
29	313			315		16	31		31		319		320		32		322	
	_		325	326		327		328		329	<u> </u>	30	3	31	-	32	_	333
31 3	334	335	336	33	37	33	38	33	9	340)	341		342	2	343	3	344
		FEXT _F	symbo	1													Т1	1535350
		TEATR	, symut	,1														

Figure Q.17/G.992.1 – Symbol pattern in a hyperframe without cyclic prefix – Downstream

	ιк
- 1 -	1170

R																		
0	0	1		2		3	4	ļ		5	6	5	7		8		9	10
1	1 11 12 13 14 15									16 17 18 19 20					21			
2	2 22 23 24 25 26									27 28 29 30 31								
3	32	33	34		35		36		37		38	3	9	40		41		42
4	43	44	4	15	4	6	47		48		49		50	5	1	52	2	53
5	54	55	5	56		57	4	58		59	6	50	61		62		63	64
6	6	5	66	6	57	68		69		70		71		72	7	3	74	
7	75	76	77		78		79	8	0	8	31	82	2	83		84	8	5
8	8 86 87 88 89 90 9								91		92		93	94	Ļ	95		96
9	97	98		99	1	00	10		10	2	10		104		05	10)6	107
10	108			110		111		112	<u>i</u>	113		14	11		116		117	118
11		19	120		21	12		123		12		125		126	1	27		8
12	129	130	131		132		133	<u> </u>	34	_	.35	13		137		138		39
13	140	141		42	14		144		145		146		147	14		149		150
14	151	152		153		154			1:		15		158		159		60	161
15	16		63	16		165		166		167		168	_	69	17		171	172
16		173	174		175		76	17		_	78	179		180	<u> </u>	181	1	82
17	183	184	18		186	_	187		188	_	189		90	191		192		193
18	194	195		.96		97	19		19		200		201		02	20		204
19	205			207		208		209	1	210		11	21		213		214	215
20			217	_	18	219		220		22		222		223	22		22:	<u> </u>
21	226	227	228		229		230		31		232	23	-	234		235		236
22	239	238	23		24		241		242 2:		243		244	24		246	_	247
23 24	248	249	, 60	250 26		251 262	25	263	<u> </u>	264	25	265	255	<u> </u>	256 267		57 268	258 269
24 25		⁹ 2 270	271	_	272	202		203		204		203 276		277	_	.78	_	209 79
23 26	280	281	271	_	283		284		285	_	286	_	,	277		289		290
20 27	291	292		93		94	204		29	_	280		298		, <u> </u>	30	_	301
27	302			304		305	_	, 06		<u>807</u>	_	08	30		310		0 311	312
20 29	31		314	-	15	316		317		318		319		20	32		322	- <u>18 m</u>
30		324	325		326		27	32	÷ L	_	, 29	33	_	331		332		33
31	334	335	33		33		338		339		340		<u>341</u>	34		343		344
- 1		1								_								-
		FEXT	C syn	nbol													T1	535360-0
		NEXT	$\Gamma_{\rm C}$ syn	nbol														
	<u> </u>	-																

Figure Q.18/G.992.1 – Symbol pattern in a hyperframe without cyclic prefix – Upstream

Q.7.2 Handshake – Non-standard information block (new)

This section defines the format of the G.994.1 non-standard information block to support Annex Q, and tabulates the parameters used by Annex Q. The use of these parameters is described in §Q.7.3 and §Q.7.4.

Q.7.2.1 Non-standard information block format (new)

Figure Q.19 defines the format of the non-standard information block.

8	7	6	5	4	3	2	1			
		Non-star		nation length ctet)	n = M + 6					
				ntry code see Note 1)						
	Provider code (vendor identification) (4 octets – see Note 2)									
		Ve		fic informati – Note 3)	on					

NOTE 1 – The value of this field shall be B5 00, the country code for USA

NOTE 2 – The value of this field shall be 43 45 4E 54, ASCII "CENT" for Centillium Communications

NOTE 3 – These octets are defined in Q.7.2.2. Formatting of these octets shall comply with the parsing rules defined in G.994.1 9.2.1 to 9.2.3

Figure Q.19 – Non-standard information block format

Q.7.2.2 Non-standard information block parameters (new)

The G.994.1 non-standard parameters for Annex Q are listed in Tables Q.5 to Q.6.2.1.2.5 below.

Table Q.5 – Non-standard information field – NPar(1) coding

Bits								
8	7	6	5	4	3	2	1	NPar(1)s
x	х	х	х	х	х	х	1	Reserved for future use
х	х	х	х	х	х	1	х	Reserved for future use
х	х	х	х	х	1	х	х	Reserved for future use
х	х	х	х	1	х	х	х	Reserved for future use
х	х	х	1	х	х	х	х	Reserved for future use
х	х	1	х	х	х	х	х	Reserved for future use
х	1	х	х	х	х	х	х	Reserved for future use
х	0	0	0	0	0	0	0	No parameters in this octet

Table Q.6 – Non-standard information field – SPar(1) coding

Bits								
8	7	6	5	4	3	2	1	SPar(1)s
x	х	х	х	х	х	х	1	G.992.1 Annex Q
х	х	х	х	х	х	1	х	Reserved for future use
х	х	х	х	х	1	х	х	Reserved for future use
х	х	х	х	1	х	Х	х	Reserved for future use
х	х	х	1	х	х	х	х	Reserved for future use
х	х	1	х	х	х	Х	х	Reserved for future use
х	1	х	х	х	Х	Х	х	Reserved for future use
x	0	0	0	0	0	0	0	No parameters in this octet

Bits								
8	7	6	5	4	3	2	1	G.992.1 Annex Q NPar(2)s
х	х	х	х	Х	Х	Х	1	$n_{\text{C-PILOT1}} = 64$
х	х	х	х	х	х	1	х	$n_{\text{C-PILOT1}} = 128$
х	х	х	Х	х	1	Х	х	$n_{\text{C-PILOT1}} = 256$
х	х	х	х	1	Х	Х	х	Amateur radio notch – 1.8 MHz band
х	х	х	1	х	х	х	х	Amateur radio notch – 3.5 MHz band
х	х	1	х	х	х	х	х	Reserved for future use
X	х	0	0	0	0	0	0	No parameters in this octet

Table Q.6.1 – Non-standard information field – G.992.1 Annex Q NPar(2) coding

Table Q.6.2 – Non-standard information field – G.992.1 Annex Q SPar(2) coding

Bits								
8	7	6	5	4	3	2	1	G.992.1 Annex Q SPar(2)s
х	х	х	х	х	х	х	1	Additional inband spectral shaping
Х	Х	х	х	Х	х	1	х	Reserved for future use
Х	Х	х	х	Х	1	Х	х	Reserved for future use
х	х	х	х	1	х	х	х	Reserved for future use
х	х	х	1	х	х	х	х	Reserved for future use
х	х	1	х	х	х	х	х	Reserved for future use
х	х	0	0	0	0	0	0	No parameters in this octet

Table Q.6.2.1 – Non-standard information field – G.992.1 Annex Q Npar(3) coding Octet 1

Bits								
8	7	6	5	4	3	2	1	G.992.1 Annex Q Npar(3)s Octet 1
Х	х					Х	х	NOMINAL_PSD_lowband (bits 8 & 7)
Х	х	х	х	х	Х			Reserved for future use

Table Q.6.2.1.1 – Non-standard information field – G.992.1 Annex Q Npar(3) coding Octet 2

Bits								
8	7	6	5	4	3	2	1	G.992.1 Annex Q Npar(3)s Octet 2
х	х	х	х	Х	х	Х	х	NOMINAL_PSD_lowband (bits 6 to 1)

Table Q.6.2.1.2 – Non-standard information field – G.992.1 Annex Q Npar(3) coding Octet 3

Bits								
8	7	6	5	4	3	2	1	G.992.1 Annex Q Npar(3)s Octet 3
х	Х					х	х	PSD level at 1622 kHz (bits 8 & 7)
Х	х	х	х	Х	Х			Reserved for future use

Table Q.6.2.1.3 – Non-standard information field – G.992.1 Annex Q Npar(3) coding Octet 4

Bits								
8	7	6	5	4	3	2	1	G.992.1 Annex Q Npar(3)s Octet 4
X	X	Х	Х	Х	х	Х	Х	PSD level at 1622 kHz (bits 6 to 1)

Table Q.6.2.1.4 – Non-standard information field – G.992.1 Annex Q Npar(3) coding Octet 5

Bits								
8	7	6	5	4	3	2	1	G.992.1 Annex Q Npar(3)s Octet 5
Х	х					Х	х	PSD level at 3750 kHz (bits 8 & 7)
х	x	х	х	х	х			Reserved for future use

Table Q.6.2.1.5 – Non-standard information field – G.992.1 Annex Q Npar(3) coding Octet 6

Bits								
8	7	6	5	4	3	2	1	G.992.1 Annex Q Npar(3)s Octet 6
х	Х	х	Х	Х	х	Х	Х	PSD level at 3750 kHz (bits 6 to 1)

Q.7.3 Handshake – Parameter definitions (supplements 10.2)

Q.7.3.1 Handshake – ATU-C (supplements 10.2)

Q.7.3.1.1 CL messages (supplements 10.2.1)

See Table Q.7.

NSF parameter	Definition

G.992.1 Annex Q	If set to ONE, this Spar(1) bit indicates that the ATU-C is configured to support G.992.1 Annex Q.
ⁿ C-PILOT1 ⁼⁶⁴	This Npar(2) bit shall be set to ONE, indicating that the ATU-C supports transmission of pilot tone on subcarrier 64.
ⁿ C-PILOT1 ⁼¹²⁸	This Npar(2) bit shall be set to ONE, indicating that the ATU-C supports transmission of pilot tone on subcarrier 128.
ⁿ C-PILOT1 ⁼²⁵⁶	This Npar(2) bit shall be set to ONE, indicating that the ATU-C supports transmission of pilot tone on subcarrier 256.
Amateur radio notch – 1.8 MHz band	If set to ONE, this Npar(2) bit indicates that the ATU-C is configured to reduce its transmit power between 1.81 and 2.0 MHz to ≤ -80 dBm.
Amateur radio notch – 3.5 MHz band	If set to ONE, this Npar(2) bit indicates that the ATU-C is configured to reduce its transmit power between 3.5 and 3.8 MHz to ≤ -80 dBm.
Additional inband spectral shaping	If set to ONE, this Spar(2) bit indicates that the ATU-C is configured to apply additional downstream inband spectral shaping as defined by the values of REDUCED_PSD_lowband, PSD level at 1622 kHz, and PSD level at 3750 kHz
REDUCED_PSD_ lowband	This 8 bit Npar(3) parameter indicates the relative downstream PSD level that the ATU-C is configured to use in the passband below 1104 kHz. It is coded in steps of 0.125dB relative to NOMINAL_PSD_lowband (-40dBm/Hz). For example, 00000000 means -40 dBm/Hz; 00001101 means -41.625 dBm/Hz.
PSD level at 1622 kHz	This 8 bit Npar(3) parameter indicates the relative downstream PSD level that the ATU-C is configured to use at 1622 kHz. It is coded in steps of 0.125dB relative to NOMINAL_PSD_lowband (-40dBm/Hz). For example, 00000000 means -40 dBm/Hz; 00001101 means -41.625 dBm/Hz. The PSD level shall be linearly interpolated in dBs between the REDUCED_PSD_lowband level at 1104 kHz and the PSD level at 1622 kHz.
PSD level at 3750 kHz	This 8 bit Npar(3) parameter indicates the relative downstream PSD level that the ATU-C is configured to use at 3750 kHz. It is coded in steps of 0.125dB relative to NOMINAL_PSD_lowband (-40dBm/Hz). For example, 00000000 means -40 dBm/Hz; 00001101 means -41.625 dBm/Hz. The PSD level shall be linearly interpolated in dBs between the PSD level at 1622 kHz and the PSD level at 3750 kHz.

Q.7.3.1.2 MS messages (supplements 10.2.2)

See Table Q.8.

Table Q.8/G.992.1 -	- ATU-C MS message	NPar(2) bit d	lefinitions for A	Annex Q
---------------------	--------------------	---------------	-------------------	---------

NSF bit	Definition
C 002 1 A margare O	I Contra ONE this Super(1) hit is lighted that the ATH C is established C 002.1 Assume O
G.992.1 Annex Q	If set to ONE, this Spar(1) bit indicates that the ATU-C is selecting G.992.1 Annex Q.
ⁿ C-PILOT1 ⁼⁶⁴	If set to ONE, this Npar(2) bit shall indicate that the ATU-C is selecting the pilot tone on subcarrier 64 (Note 1).
ⁿ C-PILOT1 ⁼¹²⁸	If set to ONE, this Npar(2) bit shall indicate that the ATU-C is selecting the pilot tone on subcarrier 128 (Note 1).
ⁿ C-PILOT1 ⁼²⁵⁶	If set to ONE, this Npar(2) bit shall indicate that the ATU-C is selecting the pilot tone on subcarrier 256 (Note 1).
Amateur radio notch – 1.8 MHz band	If set to ONE, this Npar(2) bit indicates that the ATU-C shall reduce its transmit power between 1.81 and 2.0 MHz to ≤ -80 dBm.
Amateur radio notch – 3.5 MHz band	If set to ONE, this Npar(2) bit indicates that the ATU-C shall reduce its transmit power between 3.5 and 3.8 MHz to ≤ -80 dBm.

Additional inband	If set to ONE, this Spar(2) bit indicates that the ATU-C shall apply additional downstream
spectral shaping	inband spectral shaping as defined by the values of REDUCED PSD lowband, PSD level at
1 10	1622 kHz, and PSD level at 3750 kHz
DEDUCED DOD	
REDUCED_PSD	This 8 bit Npar(3) parameter indicates the relative downstream PSD level that the ATU-C
_lowband	shall apply in the passband below 1104 kHz. It is coded in steps of 0.125dB relative to
	NOMINAL_PSD_lowband (-40dBm/Hz). For example, 00000000 means -40 dBm/Hz;
	00001101 means -41.625 dBm/Hz.
PSD level at 1622	This 8 bit Npar(3) parameter indicates the relative downstream PSD level that the ATU-C
kHz	shall apply at 1622 kHz. It is coded in steps of 0.125dB relative to NOMINAL_PSD_lowband
	(-40dBm/Hz). For example, 00000000 means -40 dBm/Hz; 00001101 means -41.625
	dBm/Hz. The PSD level shall be linearly interpolated in dBs between the
	REDUCED_PSD_lowband level at 1104 kHz and the PSD level at 1622 kHz.
PSD level at 3750	This 8 bit Npar(3) parameter indicates the relative downstream PSD level that the ATU-C
kHz	shall apply at 3750 kHz. It is coded in steps of 0.125dB relative to NOMINAL_PSD_lowband
	(-40dBm/Hz). For example, 00000000 means -40 dBm/Hz; 00001101 means -41.625
	dBm/Hz. The PSD level shall be linearly interpolated in dBs between the PSD level at 1622
	kHz and the PSD level at 3750 kHz.
Note 1: One and on	ly one pilot tone bit shall be set in an MS message.

Q.7.3.2 Handshake – ATU-R (supplements 10.3)

Q.7.3.2.1 CLR messages (supplements 10.3.1)

See Table Q.9.

Table Q.9/G.992.1 – ATU-R	CLR message NPar(2) bit	definitions for Annex Q
---------------------------	-------------------------	-------------------------

NSF bit	Definition
G.992.1 Annex Q	If set to ONE, this Spar(1) bit indicates that the ATU-R is configured to support G.992.1
	Annex Q.
ⁿ C-PILOT1 ⁼⁶⁴	This Npar(2) bit shall be set to ONE, indicating that the ATU-R supports reception of pilot
	tone on subcarrier 64.
nC-PILOT1 = 128	This Npar(2) bit shall be set to ONE, indicating that the ATU-R supports reception of pilot
	tone on subcarrier 128.
ⁿ C-PILOT1 ⁼²⁵⁶	This Npar(2) bit shall be set to ONE, indicating that the ATU-R supports reception of pilot
1	tone on subcarrier 256.
Amateur radio	This Npar(2) bit shall be set to ONE, indicating that the ATU-R supports the 1.8 MHz
notch – 1.8 MHz	Amateur radio band notch.
band	
Amateur radio	This Npar(2) bit shall be set to ONE, indicating that the ATU-R supports the 3.5 MHz
notch – 3.5 MHz	Amateur radio band notch.
band	
Additional inband	If set to ONE, this Spar(2) bit indicates that the ATU-R wishes to have additional downstream
spectral shaping	inband spectral shaping applied as defined by the values of REDUCED_PSD_lowband, PSD lowel at 1622 kHz, and PSD lowel at 2750 kHz
DEDUCED DOD	level at 1622 kHz, and PSD level at 3750 kHz
REDUCED_PSD lowband	This 8 bit Npar(3) parameter indicates the relative downstream PSD level that the ATU-R wishes to have applied in the passband below 1104 kHz. It is coded in steps of 0.125dB
	relative to NOMINAL PSD lowband (-40dBm/Hz). For example, 00000000 means -40
	dBm/Hz; 00001101 means -41.625 dBm/Hz.
PSD level at 1622	This 8 bit Npar(3) parameter indicates the relative downstream PSD level that the ATU-R
kHz	wishes to have applied at 1622 kHz. It is coded in steps of 0.125dB relative to
	NOMINAL PSD lowband (-40dBm/Hz). For example, 00000000 means -40 dBm/Hz;
	00001101 means -41.625 dBm/Hz. The PSD level shall be linearly interpolated in dBs
	between the REDUCED PSD lowband level at 1104 kHz and the PSD level at 1622 kHz.

PSD level at 3750	This 8 bit Npar(3) parameter indicates the relative downstream PSD level that the ATU-R
kHz	wishes to have applied at 3750 kHz. It is coded in steps of 0.125dB relative to
	NOMINAL PSD lowband (-40dBm/Hz). For example, 00000000 means -40 dBm/Hz;
	00001101 means -41.625 dBm/Hz. The PSD level shall be linearly interpolated in dBs
	between the PSD level at 1622 kHz and the PSD level at 3750 kHz.

Q.7.3.2.2 MS messages (supplements 10.3.2)

Table Q.10.

Table Q.10/G.992.1 – ATU-R MS message NPar(2) bit definitions for Annex Q

NSF bit	Definition					
G.992.1 Annex Q	If set to ONE, this Spar(1) bit indicates that the ATU-R is selecting G.992.1 Annex Q.					
ⁿ C-PILOT1 ⁼⁶⁴	If set to ONE, this Npar(2) bit shall indicate that the ATU-R is selecting the pilot tone on subcarrier 64 (Note 1).					
ⁿ C-PILOT1 ⁼¹²⁸	If set to ONE, this Npar(2) bit shall indicate that the ATU-R is selecting the pilot tone on subcarrier 128 (Note 1).					
ⁿ C-PILOT1 ⁼²⁵⁶	If set to ONE, this Npar(2) bit shall indicate that the ATU-R is selecting the pilot tone on subcarrier 256 (Note 1).					
Amateur radio notch – 1.8 MHz band	This selection shall only be performed by the ATU-C. Therefore, this Npar(2) bit shall either be set to the same value as in a previous CL message or set to ONE.					
Amateur radio notch – 3.5 MHz band	This selection shall only be performed by the ATU-C. Therefore, this Npar(2) bit shall either be set to the same value as in a previous CL message or set to ONE.					
Additional inband spectral shaping	If set to ONE, this Spar(2) bit indicates that the ATU-R is selecting additional downstream inband spectral shaping as defined by the values of REDUCED_PSD_lowband, PSD level at 1622 kHz, and PSD level at 3750 kHz					
REDUCED_PSD _lowband	This 8 bit Npar(3) parameter indicates the relative downstream PSD level that the ATU-R wishes to have applied in the passband below 1104 kHz. It is coded in steps of 0.125dB relative to NOMINAL_PSD_lowband (-40dBm/Hz). For example, 00000000 means -40 dBm/Hz; 00001101 means -41.625 dBm/Hz.					
PSD level at 1622 kHz	This 8 bit Npar(3) parameter indicates the relative downstream PSD level that the ATU-R wishes to have applied at 1622 kHz. It is coded in steps of 0.125dB relative to NOMINAL_PSD_lowband (-40dBm/Hz). For example, 00000000 means -40 dBm/Hz; 00001101 means -41.625 dBm/Hz. The PSD level shall be linearly interpolated in dBs between the REDUCED_PSD_lowband level at 1104 kHz and the PSD level at 1622 kHz.					
PSD level at 3750 kHz	This 8 bit Npar(3) parameter indicates the relative downstream PSD level that the ATU-R wishes to have applied at 3750 kHz. It is coded in steps of 0.125dB relative to NOMINAL_PSD_lowband (-40dBm/Hz). For example, 00000000 means -40 dBm/Hz; 00001101 means -41.625 dBm/Hz. The PSD level shall be linearly interpolated in dBs between the PSD level at 1622 kHz and the PSD level at 3750 kHz.					
Note 1: One and on	ly one pilot tone bit shall be set in an MS message.					

Q.7.3.2.3 MP messages (new)

Table Q.11.

NSF bit	Definition
G.992.1 Annex Q	If set to ONE, this Spar(1) bit indicates that the ATU-R is proposing G.992.1 Annex Q.
ⁿ C-PILOT1 ⁼⁶⁴	If set to ONE, this Npar(2) bit shall indicate that the ATU-R is proposing the pilot tone on subcarrier 64 (Note 1).
ⁿ C-PILOT1 ⁼¹²⁸	If set to ONE, this Npar(2) bit shall indicate that the ATU-R is proposing the pilot tone on subcarrier 128 (Note 1).
ⁿ C-PILOT1 ⁼²⁵⁶	If set to ONE, this Npar(2) bit shall indicate that the ATU-R is proposing the pilot tone on subcarrier 256 (Note 1).
Amateur radio notch – 1.8 MHz band	This selection shall only be performed by the ATU-C. Therefore, this Npar(2) bit shall either be set to the same value as in a previous CL message or set to ONE.
Amateur radio notch – 3.5 MHz band	This selection shall only be performed by the ATU-C. Therefore, this Npar(2) bit shall either be set to the same value as in a previous CL message or set to ONE.
Additional inband spectral shaping	If set to ONE, this Spar(2) bit indicates that the ATU-R is proposing additional downstream inband spectral shaping as defined by the values of REDUCED_PSD_lowband, PSD level at 1622 kHz, and PSD level at 3750 kHz
REDUCED_PSD_ lowband	This 8 bit Npar(3) parameter indicates the relative downstream PSD level that the ATU-R wishes to have applied in the passband below 1104 kHz. It is coded in steps of 0.125dB relative to NOMINAL_PSD_lowband (-40dBm/Hz). For example, 00000000 means -40 dBm/Hz; 00001101 means -41.625 dBm/Hz.
PSD level at 1622 kHz	This 8 bit Npar(3) parameter indicates the relative downstream PSD level that the ATU-R wishes to have applied at 1622 kHz. It is coded in steps of 0.125dB relative to NOMINAL_PSD_lowband (-40dBm/Hz). For example, 00000000 means -40 dBm/Hz; 00001101 means -41.625 dBm/Hz. The PSD level shall be linearly interpolated in dBs between the REDUCED_PSD_lowband level at 1104 kHz and the PSD level at 1622 kHz.
PSD level at 3750 kHz	This 8 bit Npar(3) parameter indicates the relative downstream PSD level that the ATU-R wishes to have applied at 3750 kHz. It is coded in steps of 0.125dB relative to NOMINAL_PSD_lowband (-40dBm/Hz). For example, 00000000 means -40 dBm/Hz; 00001101 means -41.625 dBm/Hz. The PSD level shall be linearly interpolated in dBs between the PSD level at 1622 kHz and the PSD level at 3750 kHz.
Note 1: More than of	ne pilot tone bit may be set in an MP message.

Table Q.11/G.992.1 – ATU-R MS message NPar(2) bit definitions for Annex Q

Q.7.4 Transceiver Training – ATU-C (supplements 10.4)

During transceiver training from C-REVERB1 to C-SEGUE1 except C-PILOTn and C-QUIETn, the ATU-C shall transmit both $FEXT_R$ and $NEXT_R$ symbols when Bitmap-N_R is enabled (Dual Bitmap mode), and shall not transmit the $NEXT_R$ symbols except pilot tone when Bitmap-N_R is disabled (FEXT Bitmap mode). The duration of each state is defined as Figure Q.24.

Q.7.4.1 C-PILOT1 (supplements 10.4.2)

The ATU-C shall start the N_{SWF} (sliding window frame) counter from 0 immediately after entering C-PILOT1, and increment the N_{SWF} counter modulo 345 after transmission of each DMT symbol. According to the sliding window function and this counter, the ATU-C decides to transmit all of the subsequent symbols in either FEXT_R or NEXT_R symbols (for example, see Figures Q.11, Q.17 and Q.22).

C-PILOT1 has two signals.

The first signal is the pilot tone, a single frequency sinusoid at $f_{C-PILOT1}$ defined as:

$$X_{k} = \begin{cases} 0, \quad k \neq n_{C-PILOT1}, \ 0 \leq k \leq NSC \\ A_{C-PILOT1}, \quad k = n_{C-PILOT1} \end{cases}$$

The frequency of the pilot tone shall be selected from one of the following choices during G.994.1 as:

- 1. $f_{\text{C-PILOT1}} = 276 \text{ kHz} (n_{\text{C-PILOT1}} = 64).$
- 2. $f_{\text{C-PILOT1}} = 552 \text{ kHz} (n_{\text{C-PILOT1}} = 128).$
- 3. $f_{\text{C-PILOT1}} = 1104 \text{ kHz} (n_{\text{C-PILOT1}} = 256).$

The second signal is the TTR indication signal used to transmit $NEXT_R/FEXT_R$ information. The ATU-R can detect the phase information of the TTR_C from this signal. The TTR indication signal shall be selected during G.994.1 as:

A48 signal -the constellation encoding of the 48th carrier with 2-bit constellation as follows:

(+, +) to indicate a FEXT_R symbol;

(+, -) to indicate a NEXT_R symbol.

Q.7.4.2 C-PILOT1A (supplements 10.4.3)

C-PILOT1A has two signals and it is the same transmitted signal as C-PILOT1 (C.7.4.1).

Q.7.4.3 C-REVERB3 (supplements 10.4.11)

In order to synchronize the first symbol of C-RATES1 with the beginning of the hyperframe and to inform the entering timing of C-RATES1 to the ATU-R, the first symbol of C-SEGUE1 shall be transmitted inside of the FEXT_R duration as shown in Figure Q.20. Therefore, the duration of C-REVERB3 is 3628 DMT symbols.

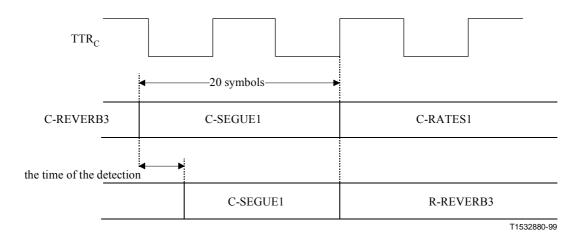


Figure Q.20/G.992.1 – Timing diagram from C-SEGUE1 to C-RATES1

Q.7.4.4 C-REVERB1 (replaces 10.4.5)

C-REVERB1 is a signal that allows the ATU-C and ATU-R receiver to adjust its automatic gain control (AGC) to an appropriate level. The data pattern used in C-REVERB1 shall be the pseudo-random downstream sequence (PRD), d_n for n = 1 to 2*NSC, defined in Q.4.7.5 and repeated here for convenience:

$$d_n = 1 for n = 1 to 9 (10-1)$$

$$d_n = d_{n-4} \oplus d_{n-9} for n = 10 to 2*NSC$$

The bits shall be used as follows: the first pair of bits $(d_1 \text{ and } d_2)$ is used for the DC and Nyquist subcarriers (the power assigned to them is, of course, zero, so the bits are effectively ignored); then the first and second bits of subsequent pairs are used to define the X_i and Y_i for i = 1 to NSC-1 as defined in Table 7-13.

The period of PRD is only 511 bits, so d_{n+511} is equal to d_n . The bits d_1 to d_9 shall be re-initialized for each symbol, so each symbol of C-REVERB1 is identical.

The two bits that modulate the pilot carrier shall be overwritten by $\{0,0\}$: generating the $\{+,+\}$ constellation.

The duration of C-REVERB1 is 512 (repeating) symbols without cyclic prefix.

Q.7.5 Transceiver Training – ATU-R (supplements 10.5)

During transceiver training from R-REVERB1 to R-SEGUE1 except R-QUIETn, the ATU-R shall transmit both $FEXT_C$ and $NEXT_C$ symbols when Bitmap-N_C is enabled (Dual Bitmap mode) and shall not transmit $NEXT_C$ symbols when Bitmap-N_C is disabled (FEXT Bitmap mode). The duration of each state is defined as Figure Q.24.

Q.7.5.1 **R-QUIET2** (supplements 10.5.1)

The ATU-R enters R-REVERB1 after it completes timing recovery and Hyperframe synchronization from C-PILOT1/C-PILOT1A.

Q.7.5.2 R-REVERB1 (supplements 10.5.2)

The data pattern used in R-REVERB1 is the pseudo-random upstream sequence PRU defined in 8.11.3 and repeated here for convenience:

$$\begin{cases} d_n = 1 & \text{for } n = 1 \text{ to } 6 \\ d_n = d_{n-5} & \oplus d_{n-6} & \text{for } n = 7 \text{ to } 64 \end{cases}$$
(C.10-1)

The ATU-R shall start its N_{SWF} counter immediately after entering R-REVERB1, and then increment the N_{SWF} counter with modulo 345 from 0 when it transmits each DMT symbol. The ATU-C and ATU-R shall have the same value since hyperframe alignment between the ATU-C and ATU-R shall be maintained. According to the sliding window and this counter, the ATU-R decides to transmit all of the subsequent symbols in either the FEXT_C or the NEXT_C symbol.

Q.7.5.3 R-QUIET3 (replaces 10.5.3)

The final symbol of R-QUIET3 accommodates the frame alignment of the transmitter to that of the receiver. It may be shortened by any number of samples. The maximum duration of R-QUIET3 is 6145 DMT symbols.

Q.7.5.4 R-REVERB2 (supplements 10.5.5)

After ATU-R detects C-SEGUE1, the ATU-R enters R-SEGUE1. The maximum duration of R-REVERB2 is 3643 DMT symbols.

Q.7.6 Channel analysis (ATU-C) (supplements 10.6)

ATU-C shall transmit only $FEXT_R$ symbols, and shall not transmit the $NEXT_R$ symbols except the pilot tone from C-RATES1 to C-CRC2. During C-MEDLEY, the ATU-C shall transmit both $FEXT_R$ and $NEXT_R$ symbols when Bitmap-N_R is enabled (Dual Bitmap mode). The ATU-C shall not transmit $NEXT_R$ symbols except the pilot tone, when Bitmap-N_R is disabled (FEXT Bitmap mode). The duration of each state is defined in Figure Q.24.

Q.7.6.1 C-SEGUE1 (supplements 10.6.1)

The duration of C-SEGUE1 is 20 symbols in order that the first symbol of C-SEGUE1 shall be inside of the FEXT_R duration.

Q.7.6.2 C-MEDLEY (replaces 10.6.6)

C-MEDLEY is a wideband pseudo-random signal used for estimation at the ATU-R of the downstream SNR. The data to be transmitted are derived from the pseudo-random sequence, PRD, and modulated as defined in 10.4.5. In contrast to C-REVERB1, however, the cyclic prefix is used and the data sequence continues from one symbol to the next (i.e. d_1 to d_9 are not re-initialized for each symbol); since PRD is of length 511, and 2*NSC bits are used for each symbol, the subcarrier vector for C-MEDLEY therefore changes from one symbol period to the next. The pilot subcarrier is overwritten by the (+,+) signal constellation. C-MEDLEY is transmitted for 16 384 symbol periods. Following C-MEDLEY the ATU-C shall enter the state C-REVERB4.

Basically, the definition of C-MEDLEY is as given above, except for the duration of the SNR estimation at ATU-R for the downstream. With the periodical noise of TCM-ISDN, SNR also changes in the same cycle, as shown in Figure Q.21. The ATU-C transmits the signal in both of $NEXT_R$ and $FEXT_R$ symbols, and the ATU-R estimates two SNRs from the received $NEXT_R$ and $FEXT_R$ symbols, respectively, as defined in Figure Q.22.

The following formula gives the information that received N_{dmt}-th DMT symbol belongs to:

For $N_{dmt} = 0, 1, ..., 344$ $S = 272 \times N_{dmt} \mod 2760$ if { (S + 271 < a) or (S > d) } if { (S > b) and (S + 271 < c) } where a = 1243, b = 1403, c = 2613, d = 2704 then symbol for estimation of NEXT_R SNR

When Bitmap-N_R is disabled (FEXT Bitmap mode), ATU-C shall transmit only the pilot tone as NEXT_R symbol. The number of bits of NEXT_R shall be no more than the number of bits of FEXT_R.

NOTE - At the transmitter, the PRD sequence generator is either always updated or always stopped during $NEXT_R$ symbol when Bitmap-N_R is disabled (FEXT Bitmap mode). The receiver should be able to support both modes of transmitter operation.

Figure Q.21/G.992.1 – Estimation of periodic Signal-to-Noise Ratio

TTR _C _	
0	
1	
2	20 21 22 23 24 25 26 27 27 28 29 2
3	30 31 32 33 34 35 36 36 37 39 40
4	41 42 43 44 45 46 47 45 45
5	51 52 53 54 55 56 57 58 59 60
6	61 62 63 64 65 66 67 88 69 70
7	71 72 73 74 75 76 77 80
8	81 82 83 84 85 86 87 88 89 99
9	91 92 93 94 95 96 97 98 99 101
10	101 102 103 104 105 106 107 108 109 110
11	112 113 114 115 116 117 118 119 120 121
12	122 123 124 125 26 127 128 129 139 131
13	132 133 134 135 136 137 138 139 144
14	142 143 144 145 146 147 149 150 152 152 152 152 152 151
15	152 153 154 155 156 E 57 X58 X59 X60 163
16	162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 183 182
17 18	173 174 175 176 177 178 179 188 182 183 184 185 186 187 188 189 199 191 192
19	103 104 105 106 107 108 109 200 201 202 193 194 195 196 197 198 199 200 201 202
20	203 204 205 206 207 208 209 213 212
21	213 214 215 216 217 218 239 222 222
22	223 224 225 226 227 228 228 233 233 233
23	233 234 235 236 237 238 238 243 243 243
24	244 245 246 247 248 249 253 253 253
25	254 255 256 257 258 259 269 269 263 263
26	264 265 266 267 268 269 2778 277 273
27	274 275 276 277 278 279 280 283
28	284 285 286 287 288 289 299 299 293
29	294 295 296 297 298 299 200 300 300 200
30	304 305 306 307 308 309 334 333 333 314 314
31	315 316 317 318 319 320 322 323 324
32	325 326 327 328 3 29 333 332 333 3 34
33	335 336 337 338 339 340 342 343 344
	Symbol for estimation of FEXT _R S/N Symbol not used for S/N estimation
	Symbol for estimation of NEXT _R S/N T1535370-00
	Symbol for estimation of MEXTR STA

Figure Q.22/G.992.1 – Symbol pattern in a hyperframe for S/N estimation – Downstream

Q.7.6.3 C-RATES1 (supplements 10.6.2)

In order to support data rates greater than 32 Mbit/s, the B_I field has 11 bits. The RRSI fields shall use the same extended syntax as defined in Q.7.9.4 for C-RATES-RA.

For the S=1/2n framing mode (see §Q.4.9), the downstream RS_I shall be the number of parity bytes per sync byte, i.e., $RS_I = R_I/(n^*S)$.

Table Q.12/G.992.1 – Assignment of 48 bits of C-MSG1					
Suffix(ces) of <i>m_i</i> (Note 1)	Parameter (Note 3)				
47-44	Minimum required downstream SNR margin at initialization (Note 2)				
43-18	Reserved for future use				
17	Trellis coding option				
16	Overlapped spectrum option (Note 4)				
15	Unused (shall be set to "1")				
14-12	Reserved for future use				
11	NTR				
10-9	Framing mode				
8-6	Transmit PSD during initialization				
5	Reserved				
4-0	Maximum numbers of bits per subcarrier supported				
NOTE 1 – Within the separate fields	the least significant bits have the lowest subscripts.				
NOTE 2 – A positive number of dB;	binary coded 0-15 dB.				
NOTE 3 – All reserved bits shall be	set to "0".				
NOTE 4 The initialization sequence allows for interworking of overlapped and non-overlapped spectrum					

Q.7.6.4 C-MSG1 (supplements 10.6.4)

NOTE 4 – The initialization sequence allows for interworking of overlapped and non-overlapped spectrum implementations. Therefore, this indication is for information only.

Q.7.6.4.1 Maximum numbers of bits per subcarrier supported – Bits 4-0 (replaces 10.6.4.8)

The N_{downmax} (transmit) capability shall be binary encoded onto $\{m_4, ..., m_0\}$ (e.g. $10001_2 = 17$). The maximum number of bits for the upstream data, N_{upmax} , that the ATU-C receiver can support need not be signalled to the ATU-R; it will be implicit in the bits and gains message, C-B&G, which is transmitted after channel analysis.

Q.7.7 Channel analysis (ATU-R) (supplements 10.7)

From R-RATES1 to R-CRC2, the ATU-R shall transmit only the FEXT_{C} symbols and shall not transmit the NEXT_{C} symbols. In R-SEGUE2 and R-MEDLEY, the ATU-R shall transmit both FEXT_{C} and NEXT_{C} symbols when Bitmap-N_C is enabled (Dual Bitmap mode) and shall not transmit NEXT_{C} symbols when Bitmap-N_C is disabled (FEXT Bitmap mode). The duration of each state is defined in Figure Q.24.

Q.7.8 R-SEGUE1 (supplements 10.7.1)

The maximum duration of R-SEGUE1 is 14 symbols (see Figure Q.20).

Q.7.8.1 R-REVERB3 (supplements 10.7.2)

The ATU-R shall start R-REVERB3 aligned with the beginning of a Hyperframe.

Q.7.8.2 R-SEGUE2 (supplements 10.7.3)

The duration of R-SEGUE2 is 13 symbols.

Q.7.8.3 R-MEDLEY (supplements 10.7.8)

Basically, the definition of R-MEDLEY is the same as 10.7.8, except for the duration of the SNR estimation at ATU-C for the upstream. With the periodical noise of TCM-ISDN, SNR also changes in the same cycle, as shown in Figure Q.21. ATU-R shall transmit the signal in both of NEXT_C and FEXT_C symbols, and ATU-C shall estimate two SNRs from the received NEXT_C and FEXT_C symbols, respectively, as defined in Figure Q.23.

The following numerical formula gives the information that received N_{dmt}-th DMT symbol belongs to:

For $N_{dmt} = 0, 1, ..., 344$ $S = 272 \times N_{dmt} \mod 2760$ if { (S > b) and (S + 271 < c) } if { (S + 271 < a) } where a = 1148, b = 1315, c = 2608

then symbol for estimation of FEXT_{C} SNR then symbol for estimation of NEXT_{C} SNR

When Bitmap-N_C is disabled (FEXT Bitmap mode), the ATU-R shall not transmit NEXT_C symbol. The number of bits of NEXT_C shall be no more than the number of bits of FEXT_C.

NOTE - At the transmitter, the PRD sequence generator is either always updated or always stopped during $NEXT_R$ symbol when Bitmap-N_R is disabled (FEXT Bitmap mode). The receiver should be able to support both modes of transmitter operation.

TTR _R _									
0		4		5	6	7		8	9
1		4	15		16	17		8	19
2				20		27	28	_	29
3	30 33 32 33 34		35	36		37	38		9 40
4			5	46	47		48	49	50
5	51 52 53 54	55		56	57		58	59	60
6	61 62 63 64	65		56	67	6	8	69	70
7	71 72 73 74	75	7	5	77	78		79	80
8	81 82 83 84 8	5	86	3	37	88	8	9	90
9	91 92 93 94 95		96	97	′	98	99	1	00 101
10	101 102 103 104 105		.06	107	10	08	109	11	
11	115	1	6	117	118	8	119	120	
12	122 123 124 125	120		127	128		29	130	131
13		136		37	138	13		140	141
14		46	14		148	149		50	151
15			157		58	159	16		161
16			167	168		169	170		71 172
17	176		77	178		79	180	18	
18	183 184 185 186	18		188	189		190	191	- <u>-</u>
19 20		197		198	199 209	21	00	201	202
20 21		207 17)8	209 219	220		211 21	212 222
21	213 224 225 226 22		228		29	230	23		232
22			228	239		230	241		42 243
23	244 245 247		48	249	25		251	25	
25	254 255 256 257	25		259	260		260	262	
26	264 / 265 / 266 / 267 //	268		269	270		71	272	273
27	214 215 216 227	278		79	280	28		282	283
28	284 285 286 287 28	88	289) 2	.90	291	29	92	293
29	294 295 296 297 298	3	299	30	0	301	302	2	303
30	304 305 306 307 308		309	310	3	11	312	3	13 314
31	313 316 317 318	3	19	320	32	1	322	32	3 324
32	325 326 327 328	32	9	330	331		332	333	334
33	335 336 331 338	339		340	341	34	42	343	344
					_			T15352	290-00
	Symbol for estimation of FEXT _C S/N				Sy	mbol	not use	ed for	S/N estim
	Symbol for estimation of NEXT _C S/N								
	2 Symbol for estimation of NEXT _C S/N								

Figure Q.23/G.992.1 – Symbol pattern in a hyperframe for S/N estimation – Upstream

Q.7.8.4 R-MSG1 (supplements 10.7.6)

Suffix(ces) of m_i (Note 1)	Parameter (Note 2)					
47-18	Reserved for future use					
17	Trellis coding option					
16	Overlapped spectrum option (Note 3)					
15	Unused (shall be set to "1")					
14	Support of S = $1/2$ mode (see Q.4.9) (Note 4)					
13	Support of dual latency downstream					
12	Support of dual latency upstream					
11	Network Timing Reference					
10, 9	Framing mode					
8-5	Reserved for future use					
4-0 Maximum numbers of bits per subcarrier supported						
NOTE 1 – Within the separate fields t	he least significant bits have the lowest subscripts.					
NOTE 2 – All reserved bits shall be se	et to "0".					
	allows for interworking of overlapped and non-overlapped spectrum					
implementations. Therefore, this indic	cation is for information only.					
NOTE 4 Since the $S=1/2$ mode is m	and story for Annay O a modern supporting Annay O shall get this bit to hinary					

Table Q.13/G.992.1 – Assignment of 48 bits of R-MSG1

NOTE 4 – Since the S=1/2 mode is mandatory for Annex Q, a modem supporting Annex Q shall set this bit to binary ONE.

Q.7.8.4.1 Maximum numbers of bits per subcarrier supported – Bits 4-0 (replaces 10.7.6.6)

The N_{upmax} (transmit) capability is encoded onto $\{m_4, ..., m_0\}$ with a conventional binary representation (e.g. $10001_2 = 17$).

Q.7.9 Exchange – ATU-C (supplements 10.8)

During C-RATESn, C-MSGn, C-B&G, and C-CRCn, the ATU-C shall transmit the FEXT_R symbol. In the other signals, the ATU-C shall transmit both FEXT_R and NEXT_R symbols when Bitmap-N_R is enabled (Dual Bitmap mode), and shall not transmit the NEXT_R symbols except pilot tone when Bitmap-N_R is disabled (FEXT Bitmap mode). The duration of each state is defined in Figure Q.25.

Q.7.9.1 C-MSG2 (supplements 10.8.9)

 $n_{1C-MSG2} = 43$ $n_{2C-MSG2} = 91$

Q.7.9.1.1 Total number of bits per symbol supported (supplements 10.8.9.3)

The maximum number of bits per symbol is defined at the reference point B, that is calculated from the FEXT_C and NEXT_C downstream channel performance (e.g. if the maximum numbers of bits that can be supported in FEXT_C and NEXT_C symbols are 111 and 88 {Total number of bits per symbol supported} = $(111 \times 126 + 88 \times 214)/340 = 96)$.

NOTE – The number of symbols per hyperframe is 340. The number of FEXT symbols is 126. The number of NEXT symbols is 214.

Q.7.9.2 C-B&G (replaces 10.8.13)

C-B&G shall be used to transmit to the ATU-R the bits and gains information, Bitmap-F_C { b_1 , g_1 , b_2 , g_2 , ... b_{31} , g_{31} }, and Bitmap-N_C { b_{33} , g_{33} , b_{34} , g_{34} , ..., b_{63} , g_{63} }, that are to be used on the upstream carriers. b_i of Bitmap-F_C indicates the number of bits to be coded by ATU-R transmitter onto the *i* th upstream carrier in FEXT_C symbols; g_i of Bitmap-F_C indicates the scale factor, relative to the gain that was used for that carrier during the transmission of R-MEDLEY, that shall be applied to the *i* th upstream carrier in NEXT_C symbols. Similarly, b_i of Bitmap-N_C indicates the scale factor that shall be applied to the (i - 32) th upstream carrier in NEXT_C symbols.

Because no bits or energy will be transmitted at DC or one-half the sampling rate, b_0 , g_0 , b_{32} , g_{32} , b_{64} , and g_{64} are all presumed to be zero and shall not be transmitted.

Each b_i shall be represented as an unsigned 5-bit integer, with valid b_i s lying in the range of zero to N_{upmax} , the maximum number of bits that the ATU-R is prepared to modulate onto any subcarrier, which is communicated in R-MSG1.

Each g_i shall be represented as an unsigned 11-bit fixed-point quantity, with the binary point assumed just to the right of the third most significant bit. For example, a g_i with binary representation (most significant bit listed first)

 001.01000000_2 would instruct the ATU-R to scale the constellation for carrier *i*, by a gain factor of 1.25, so that the power in that carrier shall be 1.94 dB higher than it was during R-MEDLEY.

For subcarriers on which no data are to be transmitted, and the receiver will never allocate bits (e.g. out-of-band subcarriers) both b_i and g_i shall be set to zero (00000₂ and 0000000 000₂, respectively). For subcarriers on which no data are to be currently transmitted, but the receiver may allocate bits later (e.g. as a result of an SNR improvement), the b_i shall be set to zero and the g_i to a value in the 0.19 to 1.33 range (000.00110000₂ to 001.01010101₂).

The C-B&G information shall be mapped in a 992-bit (124 byte) message *m* defined by:

$$m = \{m_{991}, m_{990}, \dots, m_1, m_0\} = \{g_{63}, b_{63}, \dots, g_{33}, b_{33}, g_{31}, b_{31}, \dots, g_1, b_1\},$$
(C.10-2)

with the MSB of b_i and g_i in the higher *m* index and m_0 being transmitted first. The message *m* shall be transmitted in 124 symbols, using the transmission method as described in 10.8.9.

When Bitmap-N_C is disabled (FEXT Bitmap mode), b_i and g_i of Bitmap-N_C shall be set to zero.

Q.7.9.3 C-SEGUE3 (replaces 10.8.16)

The duration of C-SEGUE3 is 18 symbols. Following C-SEGUE3, the ATU-C completes the initialization and enters C-SHOWTIME. In C-SHOWTIME, ATU-C shall transmit the signal using Bitmap- F_R and Bitmap- N_R with the sliding window.

When Bitmap-N_R is disabled (FEXT Bitmap mode), ATU-C shall transmit only the pilot tone as NEXT_R symbols.

	$\longleftarrow bits \longrightarrow$									
fields	7	6	5	4	3	2	1	0		
RS _F	$B_{10}(AS0)$	0		value of RS _F						
			MS	MSB LSB						
RSI	$B_8(AS0)$	B ₉ (AS0)		value of RS _I						
			MSB LSB							
S	I9	I ₈		value of S						
			MSB LSB							
Ι	I ₇	I ₆	I ₅ I ₄ I ₃ I ₂ I ₁ I ₀							
FS(LS2)	value of FS(LS2) <i>set to</i> {0000000 ₂ }									

Table Q.14/G.992.1 – RRSI fields of C-RATES-RA

The RS_I field has been extended to include bit B₉ of B_I (AS0) in bit 6, and The RS_F field has been extended to include the most significant bit B₁₀ of B_I (AS0) in bit 7, B_I (AS0) being the number of payload bytes in the AS0 bearer channel in the downstream interleave buffer. This is to support the higher data rates for the S=1/4, S=1/6 and S=1/8 modes.

The S field shall be coded $\{100100_2\}$ to indicate S=1/4, $\{100110_2\}$ to indicate S=1/6, and $\{101000_2\}$ to indicate S=1/8.

For the S=1/2n framing mode (see §Q.4.9), the downstream RS_I shall be the number of parity bytes per sync byte, i.e., $RS_I = R_I/(n^*S)$.

Q.7.10 Exchange – ATU-R (supplements 10.9)

ATU-R shall transmit only the FEXT_{C} symbols in R-MSGn, R-RATESn, R-B&G, R-CRCn. In other signals, the ATU-R shall transmit both FEXT_{C} and NEXT_{C} symbols when Bitmap-N_C is enabled (Dual Bitmap mode) and shall not transmit NEXT_{C} symbols when Bitmap-N_C is disabled (FEXT Bitmap mode). The duration of each state is defined in Figure Q.25.

Q.7.10.1 R-MSG-RA (supplements 10.9.2)

Replace Table 10-15 with Table Q.15.

Suffix(ces) of m _i	Parameter				
(Note)	All reserved bits shall be set to 0				
79-72	Reserved for ITU-T				
71 - 70	Extension to number of RS payload bytes, K				
69, 68	Extension to number of tones carrying data (ncloaded)				
67-56	B _{fast-max}				
55-49	Number of RS overhead bytes, (R)				
48-40	Number of RS payload bytes, K				
39-32	Number of tones carrying data (ncloaded)				
31-25	Estimated average loop attenuation				
24-21	Coding gain				
20-16	Performance margin with selected rate option				
15 - 14	Extension to total number of bits per DMT symbol, Bmax				
13-12	Maximum Interleave Depth				
11-0	Total number of bits per DMT symbol, B _{max}				
NOTE – Within the sepa	arate fields the least significant bits have the lowest subscripts.				

Table Q.15/G.992.1 – Assignment of 80 bits of R-MSG-RA (Annex Q)

Q.7.10.1.1 Total number of bits supported (B_{max}) (replaces 10.9.2.8)

This parameter shall be defined as in R-MSG2, see Q.7.9.1.

Q.7.10.1.2 B_{fast-max} (new)

 $B_{fast-max}$ is the maximum number of bits of the fast buffer for fast data transmitted on the condition that the bits of the fast data can be equally assigned to all FEXT-symbols and NEXT-symbols.

Fast Buffered Data Bfast-max is tf.

Q.7.10.2 R-MSG2 (supplements 10.9.8)

Table Q.10/0.772.1 – Assignment of 52 bits of K-WIS02							
Suffix(ces) of <i>m_i</i> (Note 1)	Parameter (Note 2)						
31-25	Estimated average loop attenuation						
24-21	Reserved for future use						
20-16	Performance margin with selected rate option						
15 - 14	Extension to total number of bits per DMT symbol, B _{max}						
13-12	13-12 Reserved for future use						
11-0 Total number of bits per DMT symbol, B _{max}							
NOTE 1 – Within the separate fields the least significant bits have the lowest subscripts.							
NOTE 2 – All reserved bits shall be set to "0".							

Table Q.16/G.992.1 – Assignment of 32 bits of R-MSG2

 $N_{1R-MSG2} = 10$ $N_{2R-MSG2} = 20$

Q.7.10.2.1 Total number of bits per symbol supported (supplements 10.9.8.3)

The maximum number of bits per symbol that the downstream channel can support is encoded into bits 15, 14 and 11 - 0.

The maximum number of bits per symbol is defined at the reference point B, that is calculated from the FEXT_R and NEXT_R downstream channel performance. For example, if the maximum numbers of bits that can be supported in FEXT_R and NEXT_R symbols are 111 and 88, the total number of bits per symbol supported is (111 x 126 + 88 x 214)/340 = 96.

NOTE – The number of symbols per hyperframe is 340, the number of FEXT symbols is 126, and the number of NEXT symbols is 214.

Q.7.10.3 R-B&G (replaces 10.9.14)

The purpose of R-B&G is to transmit to ATU-C the bits and gains information, Bitmap-F_R { b_1 , g_1 , b_2 , g_2 , ..., b_{NSC-1} , g_{NSC-1} }, and Bitmap-N_R { b_{NSC+1} , g_{NSC+1} , b_{NSC+2} , g_{NSC+2} , ..., $b_{2*NSC-1}$, $g_{2*NSC-1}$ }, to be used on the downstream subcarriers. b_i of Bitmap-F_R indicates the number of bits to be coded by ATU-C transmitter onto the *i* th downstream subcarrier in FEXT_R symbols; g_i of Bitmap-F_R indicates the scale factor that shall be applied to the *i* th downstream subcarrier in FEXT_R symbols, relative to the gain that was used for that carrier during the transmission of C-MEDLEY. Similarly, b_i of Bitmap-N_R indicates the number of bits onto the (*i* – NSC) th downstream carrier in NEXT_R symbols; g_i of Bitmap-N_R indicates the scale factor that shall be applied to the (*i* – NSC) th downstream carrier in NEXT_R symbols. Because no bits or energy will be transmitted at DC or one-half the sampling rate, b_0 , g_0 , b_{NSC} , g_{NSC} , b_{2*NSC} , and g_{2*NSC} are all presumed to be zero, and are not transmitted. When subcarrier 64 is reserved as the pilot tone, b_{64} and b_{NSC+64} , shall be set to 0, g_{128} and $g_{NSC+128}$ shall be set to g_{sync} . The value g_{sync} represents the gain scaling applied to the sync symbol.

Each b_i is represented as an unsigned 5-bit integer, with valid b_i lying in the range of zero to N_{downmax} , the maximum number of bits that the ATU-C is prepared to modulate onto any subcarrier, which is communicated in C-MSG1.

Each g_i is represented as an unsigned 11-bit fixed-point quantity, with the binary point assumed just to the right of the third most significant bit. For example, a g_i with binary representation (most significant bit listed first) 001.010000002 would instruct the ATU-C to scale the constellation for carrier *i* by a gain factor of 1.25, so that the power in that carrier shall be 1.94 dB higher than it was during C-MEDLEY.

For subcarriers on which no data are to be transmitted, and the receiver will never allocate bits (e.g. out-of-band subcarriers) both b_i and g_i shall be set to zero (00000₂ and 0000000 000₂, respectively). For subcarriers on which no data are to be currently transmitted, but the receiver may allocate bits later (e.g. as a result of an SNR improvement), the b_i shall be set to zero and the g_i to a value in the 0.19 to 1.33 range (000.00110000₂ to 001.01010101₂).

The R-B&G information shall be mapped in a (2*NSC-2)*16-bit ((2*NSC-2)*2 byte) message *m* defined by:

 $m = \{m_{(2*NSC-2)*16-1}, m_{(2*NSC-2)*16-2}, ..., m_1, m_0\} = \{g_{2*NSC-1}, b_{2*NSC-1}, ..., g_{NSC+1}, b_{NSC+1}, g_{NSC+1}, b_{NSC+1}, ..., g_{1}, b_1\},$ (Q.10-3)

with the MSB of b_i and g_i in the higher *m* index and m_0 being transmitted first. The message *m* shall be transmitted in (2*NSC-2)*2 symbols, using the transmission method as described in 10.9.8.

When Bitmap-N_R is disabled (FEXT Bitmap mode), b_i and g_i of Bitmap-N_R shall be set to zero.

Q.7.10.4 R-SEGUE5 (replaces 10.9.17)

The duration of R-SEGUE5 is 13 symbols. Following R-SEGUE-5, ATU-R completes the initialization and enters R-SHOWTIME. In R-SHOWTIME, ATU-R shall transmit the signal using Bitmap- F_C and Bitmap- N_C with the sliding window.

When Bitmap-N_C is disabled (FEXT Bitmap mode), ATU-R shall not transmit NEXT_C symbols.

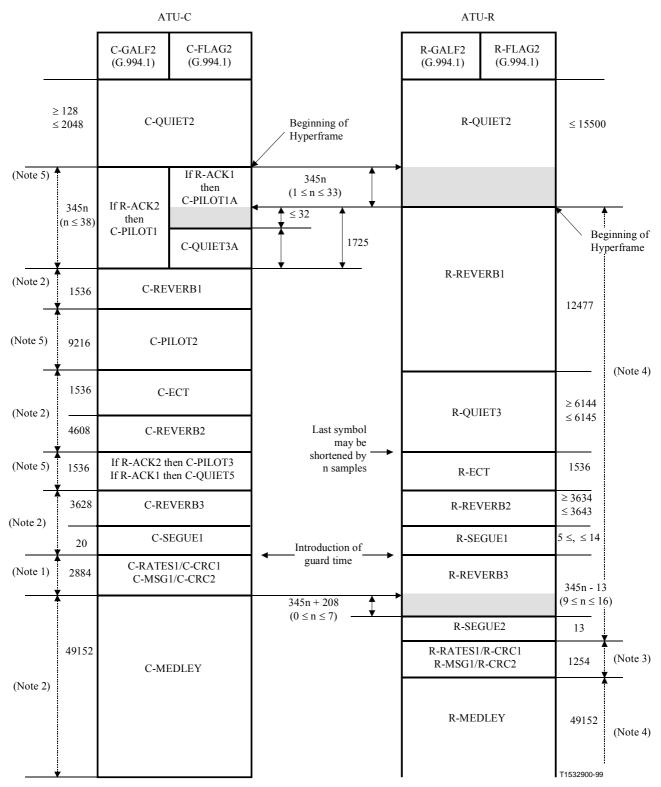
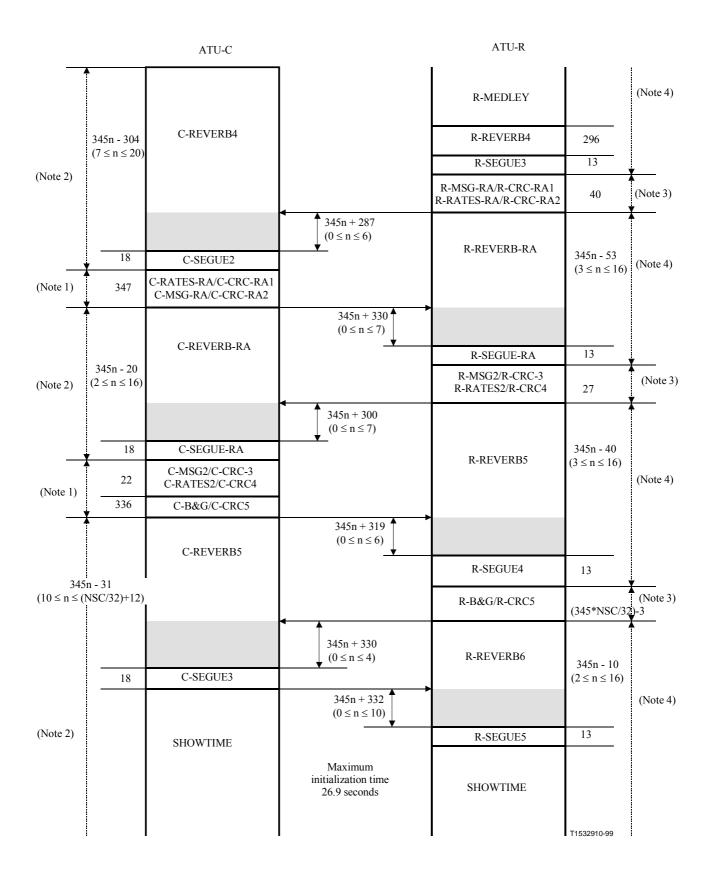
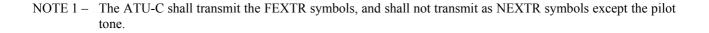




Figure Q.24/G.992.1 – Timing diagram of the initialization sequence – Part 1

- NOTE 2 The ATU-C shall transmit both FEXTR and NEXTR symbols, when Bitmap-NR is enabled (Dual Bitmap mode). ATU-C shall not transmit the NEXTR symbols except pilot tone, when Bitmap-NR is disabled (FEXT Bitmap mode).
- NOTE 3 The ATU-R shall transmit the FEXTC symbols, and shall not transmit the NEXTC symbols.
- NOTE 4 The ATU-R shall transmit both FEXTC symbols, when Bitmap-NC is enabled (Dual Bitmap mode). ATU-R shall not transmit NEXTC symbols, when Bitmap-NC is disabled (FEXT Bitmap mode).
- NOTE 5 The ATU-C shall transmit both FEXTR and NEXTR symbols.

Figure Q.25/G.992.1 – Timing diagram of the initialization sequence – Part 2

Q.8 AOC On-line adaptation and reconfiguration (pertains to clause 11)

Q.8.1.1 Bit swap request (replaces 11.2.3)

The receiver shall initiate a bit swap by sending a bit swap request to the transmitter via the AOC channel. This request tells the transmitter which subcarriers are to be modified. The format of the request is shown in Table Q.17.

Message header		Message	field 1-4			
$\{11111111_2\}$	Bitmap index Subchannel Command Subchanne					
(8 bits)	(1 bit)	index – bits 10	(5 bits)	index – bits 8		
(*****)		& 9		to 1		
		(2 bits)		(8 bits)		

The request shall comprise nine bytes as follows:

- an AOC message header consisting of 8 binary ones;
- message fields 1-4, each of which consists of a one-bit bitmap index, subchannel index bits 10 & 9, and a five-bit command followed by bits 8 to 1 of the subchannel index. One-bit bitmap index, subchannel index bits 10 & 9, and valid five-bit commands for the bit swap message shall be as shown in Table Q.18. In Table Q.18, the MSB for the bit swap request command represents the Bitmap index. For downstream data, Bitmap index equals 0 indicates Bitmap-F_R, and Bitmap index equals 1 indicates Bitmap-N_R. Similarly for upstream data, Bitmap index bits 10 & 9. The ten-bit subchannel index is counted from low to high frequencies with the lowest frequency subcarrier having the number zero. The subcarrier index zero shall not be used;
- the bit swap between $FEXT_{C/R}$ symbols and $NEXT_{C/R}$ symbols is not allowed.

Value (8 bit)	Interpretation			
yzz000002	Do nothing			
yzz000012	Increase the number of allocated bits by one			
yzz000102	Decrease the number of allocated bits by one			
yzz000112	Increase the transmitted power by 1 dB			
yzz001002	Increase the transmitted power by 2 dB			
yzz001012	Increase the transmitted power by 3 dB			
yzz001102	Reduce the transmitted power by 1 dB			
yzz001112	Reduce the transmitted power by 2 dB			
yzz01xxx ₂	Reserved for vendor discretionary commands			
NOTE – y is "0" for $FEXT_{C/R}$ symbols, and "1" for $NEXT_{C/R}$ symbols of the Sliding Window.				
NOTE – subchannel index = zz_2 *256 + subchannel index value from lower 8 bit field				

Table Q.18/G.992.1 - Bit swap request command

The bit swap request message (i.e. header and message fields) shall be transmitted five consecutive times.

To avoid g_i divergence between ATU-C and ATU-R after several bit swaps, for a g_i update of Δ dB the new g_i value should be given by:

$$g_i' = (1/256) \times round(256 \times g_i \times 10 \exp(\Delta/20))$$
 (Q.11-1)

Q.8.1.2 Extended bit swap request (supplements 11.2.4)

The format of the extended bit swap request is shown in Table Q.19.

Message header {11111100 ₂ }	Message field 1-6				
	Bitmap index	Subchannel	Command	Subchannel	
(8 bits)	(1 bit)	index – bits 10	(5 bits)	index – bits 8	
(0 010)		& 9		to 1	
		(2 bits)		(8 bits)	

In the same manner as the bit swap request, each of the message fields of the extended bit swap request consists of one-bit bitmap index, a five-bit command followed by a related ten-bit subchannel index.

Q.8.1.3 Bit swap acknowledge (supplements 11.2.5)

The bit swap superframe counter number shall only indicate the last superframe (SPF#4) of a hyperframe.

The new bit and/or transmit power table(s) shall then take effect starting from the first frame (frame 0) of SPF#0 of a hyperframe.

If the bit swap superframe counter number contained in the received bit swap acknowledge message does not indicate SPF#4, then the new table(s) shall take effect starting from frame 0 of SPF#0 of the next hyperframe.